Spaces:
Running
Running
import requests | |
import os | |
import gradio as gr | |
from huggingface_hub import update_repo_visibility, whoami, upload_folder, create_repo, upload_file # Removed duplicate update_repo_visibility | |
from slugify import slugify | |
# import gradio as gr # Already imported | |
import re | |
import uuid | |
from typing import Optional, Dict, Any | |
import json | |
# from bs4 import BeautifulSoup # Not used | |
TRUSTED_UPLOADERS = ["KappaNeuro", "CiroN2022", "Norod78", "joachimsallstrom", "blink7630", "e-n-v-y", "DoctorDiffusion", "RalFinger", "artificialguybr"] | |
# --- Model Mappings --- | |
MODEL_MAPPING_IMAGE = { | |
"SDXL 1.0": "stabilityai/stable-diffusion-xl-base-1.0", | |
"SDXL 0.9": "stabilityai/stable-diffusion-xl-base-1.0", # Usually mapped to 1.0 | |
"SD 1.5": "runwayml/stable-diffusion-v1-5", | |
"SD 1.4": "CompVis/stable-diffusion-v1-4", | |
"SD 2.1": "stabilityai/stable-diffusion-2-1-base", | |
"SD 2.0": "stabilityai/stable-diffusion-2-base", | |
"SD 2.1 768": "stabilityai/stable-diffusion-2-1", | |
"SD 2.0 768": "stabilityai/stable-diffusion-2", | |
"SD 3": "stabilityai/stable-diffusion-3-medium-diffusers", # Assuming medium, adjust if others are common | |
"SD 3.5": "stabilityai/stable-diffusion-3.5-large", # Assuming large, adjust | |
"SD 3.5 Large": "stabilityai/stable-diffusion-3.5-large", | |
"SD 3.5 Medium": "stabilityai/stable-diffusion-3.5-medium", | |
"SD 3.5 Large Turbo": "stabilityai/stable-diffusion-3.5-large-turbo", | |
"Flux.1 D": "black-forest-labs/FLUX.1-dev", | |
"Flux.1 S": "black-forest-labs/FLUX.1-schnell", | |
} | |
MODEL_MAPPING_VIDEO = { | |
"LTXV": "Lightricks/LTX-Video-0.9.7-dev", | |
"Wan Video 1.3B t2v": "Wan-AI/Wan2.1-T2V-1.3B-Diffusers", | |
"Wan Video 14B t2v": "Wan-AI/Wan2.1-T2V-14B-Diffusers", | |
"Wan Video 14B i2v 480p": "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers", | |
"Wan Video 14B i2v 720p": "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers", | |
"Hunyuan Video": "hunyuanvideo-community/HunyuanVideo-I2V", # Default, will be overridden by choice | |
} | |
SUPPORTED_CIVITAI_BASE_MODELS = list(MODEL_MAPPING_IMAGE.keys()) + list(MODEL_MAPPING_VIDEO.keys()) | |
cookie_info = os.environ.get("COOKIE_INFO") | |
headers = { | |
"authority": "civitai.com", | |
"accept": "*/*", | |
"accept-language": "en-US,en;q=0.9", # Simplified | |
"content-type": "application/json", | |
"cookie": cookie_info, # Use the env var | |
"sec-ch-ua": "\"Chromium\";v=\"118\", \"Not_A Brand\";v=\"99\"", # Example, update if needed | |
"sec-ch-ua-mobile": "?0", | |
"sec-ch-ua-platform": "\"Windows\"", # Example | |
"sec-fetch-dest": "empty", | |
"sec-fetch-mode": "cors", | |
"sec-fetch-site": "same-origin", | |
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36" # Example | |
} | |
def get_json_data(url): | |
url_split = url.split('/') | |
if len(url_split) < 5 or not url_split[4].isdigit(): | |
print(f"Invalid Civitai URL format or model ID not found: {url}") | |
gr.Warning(f"Invalid Civitai URL format. Ensure it's like 'https://civitai.com/models/YOUR_MODEL_ID/MODEL_NAME'. Problem with: {url}") | |
return None | |
api_url = f"https://civitai.com/api/v1/models/{url_split[4]}" | |
try: | |
response = requests.get(api_url) | |
response.raise_for_status() | |
return response.json() | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching JSON data from {api_url}: {e}") | |
gr.Warning(f"Error fetching data from Civitai API for {url_split[4]}: {e}") | |
return None | |
def check_nsfw(json_data: Dict[str, Any], profile: Optional[gr.OAuthProfile]) -> bool: | |
if not json_data: | |
return False # Should not happen if get_json_data succeeded | |
# Overall model boolean flag - highest priority | |
if json_data.get("nsfw", False): | |
print("Model flagged as NSFW by 'nsfw: true'.") | |
gr.Info("Reason: Model explicitly flagged as NSFW on Civitai.") | |
return False # Unsafe | |
# Overall model numeric nsfwLevel - second priority. Max allowed is 5 (nsfwLevel < 6). | |
# nsfwLevel definitions: None (1), Mild (2), Mature (4), Adult (5), X (8), R (16), XXX (32) | |
model_nsfw_level = json_data.get("nsfwLevel", 0) | |
if model_nsfw_level > 5: # Anything above "Adult" | |
print(f"Model's overall nsfwLevel ({model_nsfw_level}) is > 5. Blocking.") | |
gr.Info(f"Reason: Model's overall NSFW Level ({model_nsfw_level}) is above the allowed threshold (5).") | |
return False # Unsafe | |
# If uploader is trusted and the above checks passed, they bypass further version/image checks. | |
if profile and profile.username in TRUSTED_UPLOADERS: | |
print(f"User {profile.username} is trusted. Model 'nsfw' is false and overall nsfwLevel ({model_nsfw_level}) is <= 5. Allowing.") | |
return True | |
# For non-trusted users, check nsfwLevel of model versions and individual images/videos | |
for model_version in json_data.get("modelVersions", []): | |
version_nsfw_level = model_version.get("nsfwLevel", 0) | |
if version_nsfw_level > 5: | |
print(f"Model version nsfwLevel ({version_nsfw_level}) is > 5 for non-trusted user. Blocking.") | |
gr.Info(f"Reason: A model version's NSFW Level ({version_nsfw_level}) is above 5.") | |
return False | |
return True # Safe for non-trusted user if all checks pass | |
def get_prompts_from_image(image_id_str: str): | |
# image_id_str could be non-numeric if URL parsing failed or format changed | |
try: | |
image_id = int(image_id_str) | |
except ValueError: | |
print(f"Invalid image_id_str for TRPC call: {image_id_str}. Skipping prompt fetch.") | |
return "", "" | |
print(f"Fetching prompts for image_id: {image_id}") | |
url = f'https://civitai.com/api/trpc/image.getGenerationData?input={{"json":{{"id":{image_id}}}}}' | |
prompt = "" | |
negative_prompt = "" | |
try: | |
response = requests.get(url, headers=headers, timeout=10) # Added timeout | |
response.raise_for_status() # Will raise an HTTPError if the HTTP request returned an unsuccessful status code | |
data = response.json() | |
print("Response from image: ", data) | |
# Expected structure: {'result': {'data': {'json': {'meta': {'prompt': '...', 'negativePrompt': '...'}}}}} | |
meta = data.get('result', {}).get('data', {}).get('json', {}).get('meta') | |
if meta: # meta can be None | |
prompt = meta.get('prompt', "") | |
negative_prompt = meta.get('negativePrompt', "") | |
except requests.exceptions.RequestException as e: | |
print(f"Could not fetch/parse generation data for image_id {image_id}: {e}") | |
except json.JSONDecodeError as e: | |
print(f"JSONDecodeError for image_id {image_id}: {e}. Response content: {response.text[:200]}") | |
return prompt, negative_prompt | |
def extract_info(json_data: Dict[str, Any], hunyuan_type: Optional[str] = None) -> Optional[Dict[str, Any]]: | |
if json_data.get("type") != "LORA": | |
print("Model type is not LORA.") | |
return None | |
for model_version in json_data.get("modelVersions", []): | |
civitai_base_model_name = model_version.get("baseModel") | |
if civitai_base_model_name in SUPPORTED_CIVITAI_BASE_MODELS: | |
base_model_hf = "" | |
is_video = False | |
if civitai_base_model_name == "Hunyuan Video": | |
is_video = True | |
if hunyuan_type == "Text-to-Video": | |
base_model_hf = "hunyuanvideo-community/HunyuanVideo" | |
else: # Default or "Image-to-Video" | |
base_model_hf = "hunyuanvideo-community/HunyuanVideo-I2V" | |
elif civitai_base_model_name in MODEL_MAPPING_VIDEO: | |
is_video = True | |
base_model_hf = MODEL_MAPPING_VIDEO[civitai_base_model_name] | |
elif civitai_base_model_name in MODEL_MAPPING_IMAGE: | |
base_model_hf = MODEL_MAPPING_IMAGE[civitai_base_model_name] | |
else: | |
print(f"Logic error: {civitai_base_model_name} in supported list but not mapped.") | |
continue | |
primary_file_info = None | |
for file_entry in model_version.get("files", []): | |
if file_entry.get("primary", False) and file_entry.get("type") == "Model": | |
primary_file_info = file_entry | |
break | |
if not primary_file_info: | |
for file_entry in model_version.get("files", []): | |
if file_entry.get("type") == "Model" and file_entry.get("name","").endswith(".safetensors"): | |
primary_file_info = file_entry | |
print(f"Using first safetensors file as primary: {primary_file_info['name']}") | |
break | |
if not primary_file_info: | |
print(f"No primary or suitable safetensors model file found for version {model_version.get('name')}") | |
continue | |
urls_to_download = [{"url": primary_file_info["downloadUrl"], "filename": primary_file_info["name"], "type": "weightName"}] | |
for image_obj in model_version.get("images", []): | |
image_url = image_obj.get("url") | |
if not image_url: | |
continue | |
image_nsfw_level = image_obj.get("nsfwLevel", 0) | |
if image_nsfw_level > 5: | |
continue | |
filename_part = os.path.basename(image_url) | |
image_id_str = filename_part.split('.')[0] | |
prompt, negative_prompt = "", "" | |
if image_obj.get("hasMeta", False): | |
prompt, negative_prompt = get_prompts_from_image(image_id_str) | |
urls_to_download.append({ | |
"url": image_url, | |
"filename": filename_part, | |
"type": "imageName", | |
"prompt": prompt, | |
"negative_prompt": negative_prompt, | |
"media_type": image_obj.get("type", "image") | |
}) | |
info = { | |
"urls_to_download": urls_to_download, | |
"id": model_version["id"], | |
"baseModel": base_model_hf, | |
"civitai_base_model_name": civitai_base_model_name, | |
"is_video_model": is_video, | |
"modelId": json_data.get("id", ""), | |
"name": json_data["name"], | |
"description": json_data.get("description", ""), | |
"trainedWords": model_version.get("trainedWords", []), | |
"creator": json_data.get("creator", {}).get("username", "Unknown"), | |
"tags": json_data.get("tags", []), | |
"allowNoCredit": json_data.get("allowNoCredit", True), | |
"allowCommercialUse": json_data.get("allowCommercialUse", "Sell"), | |
"allowDerivatives": json_data.get("allowDerivatives", True), | |
"allowDifferentLicense": json_data.get("allowDifferentLicense", True) | |
} | |
return info | |
print("No suitable model version found with a supported base model.") | |
return None | |
def download_files(info, folder="."): | |
downloaded_files = { | |
"imageName": [], # Will contain both image and video filenames | |
"imagePrompt": [], | |
"imageNegativePrompt": [], | |
"weightName": [], | |
"mediaType": [] # To distinguish image/video for gallery if needed later | |
} | |
for item in info["urls_to_download"]: | |
# Ensure filename is safe for filesystem | |
safe_filename = slugify(item["filename"].rsplit('.', 1)[0]) + '.' + item["filename"].rsplit('.', 1)[-1] if '.' in item["filename"] else slugify(item["filename"]) | |
# Civitai URLs might need auth for direct download if not public | |
try: | |
download_file_with_auth(item["url"], safe_filename, folder) # Changed to use the auth-aware download | |
downloaded_files[item["type"]].append(safe_filename) | |
if item["type"] == "imageName": # This list now includes videos too | |
prompt_clean = re.sub(r'<.*?>', '', item.get("prompt", "")) | |
negative_prompt_clean = re.sub(r'<.*?>', '', item.get("negative_prompt", "")) | |
downloaded_files["imagePrompt"].append(prompt_clean) | |
downloaded_files["imageNegativePrompt"].append(negative_prompt_clean) | |
downloaded_files["mediaType"].append(item.get("media_type", "image")) | |
except gr.Error as e: # Catch Gradio errors from download_file_with_auth | |
print(f"Skipping file {safe_filename} due to download error: {e.message}") | |
gr.Warning(f"Skipping file {safe_filename} due to download error: {e.message}") | |
return downloaded_files | |
# Renamed original download_file to download_file_with_auth | |
def download_file_with_auth(url, filename, folder="."): | |
headers = {} | |
# Add CIVITAI_API_TOKEN if available, for potentially restricted downloads | |
# Note: The prompt example didn't use it for image URLs, only for the model file via API. | |
# However, some image/video URLs might also require it if they are not fully public. | |
if "CIVITAI_API_TOKEN" in os.environ: # Changed from CIVITAI_API | |
headers['Authorization'] = f'Bearer {os.environ["CIVITAI_API_TOKEN"]}' | |
try: | |
response = requests.get(url, headers=headers, stream=True, timeout=60) # Added stream and timeout | |
response.raise_for_status() | |
except requests.exceptions.HTTPError as e: | |
print(f"HTTPError downloading {url}: {e}") | |
# No automatic retry with token here as it was specific to the primary file in original code | |
# If it was related to auth, the initial header should have helped. | |
raise gr.Error(f"Error downloading file {filename}: {e}") | |
except requests.exceptions.RequestException as e: | |
print(f"RequestException downloading {url}: {e}") | |
raise gr.Error(f"Error downloading file {filename}: {e}") | |
filepath = os.path.join(folder, filename) | |
with open(filepath, 'wb') as f: | |
for chunk in response.iter_content(chunk_size=8192): | |
f.write(chunk) | |
print(f"Successfully downloaded {filepath}") | |
def process_url(url, profile, do_download=True, folder=".", hunyuan_type: Optional[str] = None): | |
json_data = get_json_data(url) | |
if json_data: | |
if check_nsfw(json_data, profile): | |
info = extract_info(json_data, hunyuan_type=hunyuan_type) | |
if info: | |
downloaded_files_summary = {} | |
if do_download: | |
gr.Info(f"Downloading files for {info['name']}...") | |
downloaded_files_summary = download_files(info, folder) | |
gr.Info(f"Finished downloading files for {info['name']}.") | |
return info, downloaded_files_summary | |
else: | |
raise gr.Error("LoRA extraction failed. The base model might not be supported, or it's not a LoRA model, or no suitable files found in the version.") | |
else: | |
# check_nsfw now prints detailed reasons via gr.Info/print | |
raise gr.Error("This model has content tagged as unsafe by CivitAI or exceeds NSFW level limits.") | |
else: | |
raise gr.Error("Failed to fetch model data from CivitAI API. Please check the URL and Civitai's status.") | |
def create_readme(info: Dict[str, Any], downloaded_files: Dict[str, Any], user_repo_id: str, link_civit: bool = False, is_author: bool = True, folder: str = "."): | |
readme_content = "" | |
original_url = f"https://civitai.com/models/{info['modelId']}" if info.get('modelId') else "CivitAI (ID not found)" | |
link_civit_disclaimer = f'([CivitAI]({original_url}))' | |
non_author_disclaimer = f'This model was originally uploaded on [CivitAI]({original_url}), by [{info["creator"]}](https://civitai.com/user/{info["creator"]}/models). The information below was provided by the author on CivitAI:' | |
is_video = info.get("is_video_model", False) | |
base_hf_model = info["baseModel"] # This is the HF model ID | |
civitai_bm_name_lower = info.get("civitai_base_model_name", "").lower() | |
if is_video: | |
default_tags = ["lora", "diffusers", "migrated", "video"] | |
if "template:" not in " ".join(info.get("tags", [])): | |
default_tags.append("template:video-lora") | |
if "t2v" in civitai_bm_name_lower or (civitai_bm_name_lower == "hunyuan video" and base_hf_model.endswith("HunyuanVideo")): | |
default_tags.append("text-to-video") | |
elif "i2v" in civitai_bm_name_lower or (civitai_bm_name_lower == "hunyuan video" and base_hf_model.endswith("HunyuanVideo-I2V")): | |
default_tags.append("image-to-video") | |
else: | |
default_tags = ["text-to-image", "stable-diffusion", "lora", "diffusers", "migrated"] | |
if "template:" not in " ".join(info.get("tags", [])): | |
default_tags.append("template:sd-lora") | |
civit_tags_raw = info.get("tags", []) | |
civit_tags_clean = [t.replace(":", "").strip() for t in civit_tags_raw if t.replace(":", "").strip()] | |
final_civit_tags = [tag for tag in civit_tags_clean if tag not in default_tags and tag.lower() not in default_tags] | |
tags = default_tags + final_civit_tags | |
unpacked_tags = "\n- ".join(sorted(list(set(tags)))) | |
trained_words = info.get('trainedWords', []) | |
formatted_words = ', '.join(f'`{word}`' for word in trained_words if word) | |
trigger_words_section = f"## Trigger words\nYou should use {formatted_words} to trigger the generation." if formatted_words else "" | |
widget_content = "" | |
max_widget_items = 5 | |
items_for_widget = list(zip( | |
downloaded_files.get("imagePrompt", []), | |
downloaded_files.get("imageNegativePrompt", []), | |
downloaded_files.get("imageName", []) | |
))[:max_widget_items] | |
for index, (prompt, negative_prompt, media_filename) in enumerate(items_for_widget): | |
escaped_prompt = prompt.replace("'", "''") if prompt else ' ' | |
base_media_filename = os.path.basename(media_filename) | |
negative_prompt_content = f"negative_prompt: {negative_prompt}\n" if negative_prompt else "" | |
# Corrected YAML for widget: | |
widget_content += f"""- text: '{escaped_prompt}' | |
{negative_prompt_content} | |
output: | |
url: >- | |
{base_media_filename} | |
""" | |
if base_hf_model in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]: | |
dtype = "torch.bfloat16" | |
else: | |
dtype = "torch.float16" # Default for others, Hunyuan examples specify this. | |
main_prompt_for_snippet_raw = formatted_words if formatted_words else 'Your custom prompt' | |
if items_for_widget and items_for_widget[0][0]: | |
main_prompt_for_snippet_raw = items_for_widget[0][0] | |
# Escape single quotes for Python string literals | |
main_prompt_for_snippet = main_prompt_for_snippet_raw.replace("'", "\\'") | |
lora_loader_line = f"pipe.load_lora_weights('{user_repo_id}', weight_name='{downloaded_files.get('weightName', ['your_lora.safetensors'])[0]}')" | |
diffusers_example = "" | |
if is_video: | |
if base_hf_model == "hunyuanvideo-community/HunyuanVideo-I2V": | |
diffusers_example = f""" | |
```py | |
import torch | |
from diffusers import HunyuanVideoImageToVideoPipeline, HunyuanVideoTransformer3DModel | |
from diffusers.utils import load_image, export_to_video | |
# Available checkpoints: "hunyuanvideo-community/HunyuanVideo-I2V" and "hunyuanvideo-community/HunyuanVideo-I2V-33ch" | |
model_id = "{base_hf_model}" | |
transformer = HunyuanVideoTransformer3DModel.from_pretrained( | |
model_id, subfolder="transformer", torch_dtype=torch.bfloat16 # Explicitly bfloat16 for transformer | |
) | |
pipe = HunyuanVideoImageToVideoPipeline.from_pretrained( | |
model_id, transformer=transformer, torch_dtype=torch.float16 # float16 for pipeline | |
) | |
pipe.vae.enable_tiling() | |
{lora_loader_line} | |
pipe.to("cuda") | |
prompt = "{main_prompt_for_snippet if main_prompt_for_snippet else 'A detailed scene description'}" | |
# Replace with your image path or URL | |
image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/guitar-man.png" | |
image = load_image(image_url) | |
output = pipe(image=image, prompt=prompt).frames[0] | |
export_to_video(output, "output.mp4", fps=15) | |
``` | |
""" | |
elif base_hf_model == "hunyuanvideo-community/HunyuanVideo": | |
diffusers_example = f""" | |
```py | |
import torch | |
from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel | |
from diffusers.utils import export_to_video | |
model_id = "{base_hf_model}" | |
transformer = HunyuanVideoTransformer3DModel.from_pretrained( | |
model_id, subfolder="transformer", torch_dtype=torch.bfloat16 | |
) | |
pipe = HunyuanVideoPipeline.from_pretrained(model_id, transformer=transformer, torch_dtype=torch.float16) | |
{lora_loader_line} | |
# Enable memory savings | |
pipe.vae.enable_tiling() | |
pipe.enable_model_cpu_offload() # Optional: if VRAM is limited | |
output = pipe( | |
prompt="{main_prompt_for_snippet if main_prompt_for_snippet else 'A cinematic video scene'}", | |
height=320, # Adjust as needed | |
width=512, # Adjust as needed | |
num_frames=61, # Adjust as needed | |
num_inference_steps=30, # Adjust as needed | |
).frames[0] | |
export_to_video(output, "output.mp4", fps=15) | |
``` | |
""" | |
elif base_hf_model == "Lightricks/LTX-Video-0.9.7-dev" or base_hf_model == "Lightricks/LTX-Video-0.9.7-distilled": # Assuming -dev is the one from mapping | |
# Note: The LTX example is complex. We'll simplify a bit for a LoRA example. | |
# The user might need to adapt the full pipeline if they used the distilled one directly. | |
# We assume the LoRA is trained on the main LTX pipeline. | |
diffusers_example = f""" | |
```py | |
import torch | |
from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline | |
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition | |
from diffusers.utils import export_to_video, load_image, load_video | |
# Use the base LTX model your LoRA was trained on. The example below uses the distilled version. | |
# Adjust if your LoRA is for the non-distilled "Lightricks/LTX-Video-0.9.7-dev". | |
pipe = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-distilled", torch_dtype=torch.bfloat16) | |
{lora_loader_line} | |
# The LTX upsampler is separate and typically doesn't have LoRAs loaded into it directly. | |
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipe.vae, torch_dtype=torch.bfloat16) | |
pipe.to("cuda") | |
pipe_upsample.to("cuda") | |
pipe.vae.enable_tiling() | |
def round_to_nearest_resolution_acceptable_by_vae(height, width, vae_spatial_compression_ratio): | |
height = height - (height % vae_spatial_compression_ratio) | |
width = width - (width % vae_spatial_compression_ratio) | |
return height, width | |
# Example image for condition (replace with your own) | |
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/penguin.png") | |
video_for_condition = load_video(export_to_video([image])) # Create a dummy video for conditioning | |
condition1 = LTXVideoCondition(video=video_for_condition, frame_index=0) | |
prompt = "{main_prompt_for_snippet if main_prompt_for_snippet else 'A cute little penguin takes out a book and starts reading it'}" | |
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted" # Example | |
expected_height, expected_width = 480, 832 # Target final resolution | |
downscale_factor = 2 / 3 | |
num_frames = 32 # Reduced for quicker example | |
# Part 1. Generate video at smaller resolution | |
downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor) | |
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width, pipe.vae_spatial_compression_ratio) | |
latents = pipe( | |
conditions=[condition1], | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
width=downscaled_width, | |
height=downscaled_height, | |
num_frames=num_frames, | |
num_inference_steps=7, # Example steps | |
guidance_scale=1.0, # Example guidance | |
decode_timestep = 0.05, | |
decode_noise_scale = 0.025, | |
generator=torch.Generator().manual_seed(0), | |
output_type="latent", | |
).frames | |
# Part 2. Upscale generated video | |
upscaled_latents = pipe_upsample( | |
latents=latents, | |
output_type="latent" | |
).frames | |
# Part 3. Denoise the upscaled video (optional, but recommended) | |
video_frames = pipe( | |
conditions=[condition1], | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
width=downscaled_width * 2, # Upscaled width | |
height=downscaled_height * 2, # Upscaled height | |
num_frames=num_frames, | |
denoise_strength=0.3, | |
num_inference_steps=10, | |
guidance_scale=1.0, | |
latents=upscaled_latents, | |
decode_timestep = 0.05, | |
decode_noise_scale = 0.025, | |
image_cond_noise_scale=0.025, # if using image condition | |
generator=torch.Generator().manual_seed(0), | |
output_type="pil", | |
).frames[0] | |
# Part 4. Downscale to target resolution if upscaler overshot | |
final_video = [frame.resize((expected_width, expected_height)) for frame in video_frames] | |
export_to_video(final_video, "output.mp4", fps=16) # Example fps | |
``` | |
""" | |
elif base_hf_model.startswith("Wan-AI/Wan2.1-T2V-"): | |
diffusers_example = f""" | |
```py | |
import torch | |
from diffusers import AutoencoderKLWan, WanPipeline | |
from diffusers.utils import export_to_video | |
model_id = "{base_hf_model}" | |
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) # As per example | |
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16) | |
{lora_loader_line} | |
pipe.to("cuda") | |
prompt = "{main_prompt_for_snippet if main_prompt_for_snippet else 'A cat walks on the grass, realistic'}" | |
negative_prompt = "worst quality, low quality, blurry" # Simplified for LoRA example | |
output = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
height=480, # Adjust as needed | |
width=832, # Adjust as needed | |
num_frames=30, # Adjust for LoRA, original example had 81 | |
guidance_scale=5.0 # Adjust as needed | |
).frames[0] | |
export_to_video(output, "output.mp4", fps=15) | |
``` | |
""" | |
elif base_hf_model.startswith("Wan-AI/Wan2.1-I2V-"): | |
diffusers_example = f""" | |
```py | |
import torch | |
import numpy as np | |
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline | |
from diffusers.utils import export_to_video, load_image | |
from transformers import CLIPVisionModel | |
model_id = "{base_hf_model}" | |
# These components are part of the base model, LoRA is loaded into the pipeline | |
image_encoder = CLIPVisionModel.from_pretrained(model_id, subfolder="image_encoder", torch_dtype=torch.float32) | |
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) | |
pipe = WanImageToVideoPipeline.from_pretrained(model_id, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16) | |
{lora_loader_line} | |
pipe.to("cuda") | |
# Replace with your image path or URL | |
image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg" | |
image = load_image(image_url) | |
# Adjust resolution based on model capabilities (480p or 720p variants) | |
# This is a simplified example; refer to original Wan I2V docs for precise resolution handling | |
if "480P" in model_id: | |
max_height, max_width = 480, 832 # Example for 480p | |
elif "720P" in model_id: | |
max_height, max_width = 720, 1280 # Example for 720p | |
else: # Fallback | |
max_height, max_width = 480, 832 | |
# Simple resize for example, optimal resizing might need to maintain aspect ratio & VAE constraints | |
h, w = image.height, image.width | |
if w > max_width or h > max_height: | |
aspect_ratio = w / h | |
if w > h: | |
new_w = max_width | |
new_h = int(new_w / aspect_ratio) | |
else: | |
new_h = max_height | |
new_w = int(new_h * aspect_ratio) | |
# Ensure dimensions are divisible by VAE scale factors (typically 8 or 16) | |
# This is a basic adjustment, model specific patch sizes might also matter. | |
patch_size_factor = 16 # Common factor | |
new_h = (new_h // patch_size_factor) * patch_size_factor | |
new_w = (new_w // patch_size_factor) * patch_size_factor | |
if new_h > 0 and new_w > 0: | |
image = image.resize((new_w, new_h)) | |
else: # Fallback if calculations lead to zero | |
image = image.resize((max_width//2, max_height//2)) # A smaller safe default | |
else: | |
patch_size_factor = 16 | |
h = (h // patch_size_factor) * patch_size_factor | |
w = (w // patch_size_factor) * patch_size_factor | |
if h > 0 and w > 0: | |
image = image.resize((w,h)) | |
prompt = "{main_prompt_for_snippet if main_prompt_for_snippet else 'An astronaut in a dynamic scene'}" | |
negative_prompt = "worst quality, low quality, blurry" # Simplified | |
output = pipe( | |
image=image, | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
height=image.height, # Use resized image height | |
width=image.width, # Use resized image width | |
num_frames=30, # Adjust for LoRA | |
guidance_scale=5.0 # Adjust as needed | |
).frames[0] | |
export_to_video(output, "output.mp4", fps=16) | |
``` | |
""" | |
else: # Fallback for other video LoRAs | |
diffusers_example = f""" | |
```py | |
# This is a video LoRA. Diffusers usage for video models can vary. | |
# You may need to install/import specific pipeline classes from diffusers or the model's community. | |
# Below is a generic placeholder. | |
import torch | |
from diffusers import AutoPipelineForTextToVideo # Or the appropriate video pipeline | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipeline = AutoPipelineForTextToVideo.from_pretrained('{base_hf_model}', torch_dtype={dtype}).to(device) | |
{lora_loader_line} | |
# The following generation command is an example and may need adjustments | |
# based on the specific pipeline and its required parameters for '{base_hf_model}'. | |
# video_frames = pipeline(prompt='{main_prompt_for_snippet}', num_frames=16).frames | |
# For more details, consult the Hugging Face Hub page for {base_hf_model} | |
# and the Diffusers documentation on LoRAs and video pipelines. | |
``` | |
""" | |
else: # Image model | |
diffusers_example = f""" | |
```py | |
from diffusers import AutoPipelineForText2Image | |
import torch | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipeline = AutoPipelineForText2Image.from_pretrained('{base_hf_model}', torch_dtype={dtype}).to(device) | |
{lora_loader_line} | |
image = pipeline('{main_prompt_for_snippet}').images[0] | |
``` | |
""" | |
license_map_simple = { | |
"Public Domain": "public-domain", | |
"CreativeML Open RAIL-M": "creativeml-openrail-m", | |
"CreativeML Open RAIL++-M": "creativeml-openrail-m", | |
"openrail": "creativeml-openrail-m", | |
} | |
commercial_use = info.get("allowCommercialUse", "None") | |
license_identifier = "other" | |
license_name = "bespoke-lora-trained-license" | |
if isinstance(commercial_use, str) and commercial_use.lower() == "none" and not info.get("allowDerivatives", True): | |
license_identifier = "creativeml-openrail-m" | |
license_name = "CreativeML OpenRAIL-M" | |
bespoke_license_link = f"https://multimodal.art/civitai-licenses?allowNoCredit={info['allowNoCredit']}&allowCommercialUse={commercial_use[0] if isinstance(commercial_use, list) and commercial_use else (commercial_use if isinstance(commercial_use, str) else 'None')}&allowDerivatives={info['allowDerivatives']}&allowDifferentLicense={info['allowDifferentLicense']}" | |
content = f"""--- | |
license: {license_identifier} | |
license_name: "{license_name}" | |
license_link: {bespoke_license_link} | |
tags: | |
- {unpacked_tags} | |
base_model: {base_hf_model} | |
instance_prompt: {trained_words[0] if trained_words else ''} | |
widget: | |
{widget_content.strip()} | |
--- | |
# {info["name"]} | |
<Gallery /> | |
{non_author_disclaimer if not is_author else ''} | |
{link_civit_disclaimer if link_civit else ''} | |
## Model description | |
{info["description"] if info["description"] else "No description provided."} | |
{trigger_words_section} | |
## Download model | |
Weights for this model are available in Safetensors format. | |
[Download](/{user_repo_id}/tree/main) them in the Files & versions tab. | |
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) | |
{diffusers_example} | |
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) | |
""" | |
readme_content += content + "\n" | |
readme_path = os.path.join(folder, "README.md") | |
with open(readme_path, "w", encoding="utf-8") as file: | |
file.write(readme_content) | |
print(f"README.md created at {readme_path}") | |
# print(f"README.md content:\n{readme_content}") # For debugging | |
def get_creator(username): | |
url = f"https://civitai.com/api/trpc/user.getCreator?input=%7B%22json%22%3A%7B%22username%22%3A%22{username}%22%2C%22authed%22%3Atrue%7D%7D" | |
try: | |
response = requests.get(url, headers=headers, timeout=10) | |
response.raise_for_status() | |
return response.json() | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching creator data for {username}: {e}") | |
gr.Warning(f"Could not verify Civitai creator's HF link: {e}") | |
return None | |
def extract_huggingface_username(username_civitai): | |
data = get_creator(username_civitai) | |
if not data: | |
return None | |
links = data.get('result', {}).get('data', {}).get('json', {}).get('links', []) | |
for link in links: | |
url = link.get('url', '') | |
if 'huggingface.co/' in url: | |
# Extract username, handling potential variations like www. or trailing slashes | |
hf_username = url.split('huggingface.co/')[-1].split('/')[0] | |
if hf_username: | |
return hf_username | |
return None | |
def check_civit_link(profile: Optional[gr.OAuthProfile], url: str): | |
# Initial return structure: instructions_html, submit_interactive, try_again_visible, other_submit_visible, hunyuan_radio_visible | |
# Default to disabling/hiding things if checks fail early | |
default_fail_updates = ("", gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)) | |
if not profile: # Should be handled by demo.load and login button | |
return "Please log in with Hugging Face.", gr.update(interactive=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) | |
if not url or not url.startswith("https://civitai.com/models/"): | |
return "Please enter a valid Civitai model URL.", gr.update(interactive=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) | |
try: | |
# We need hunyuan_type for extract_info, but we don't know it yet. | |
# Call get_json_data first to check if it's Hunyuan. | |
json_data_preview = get_json_data(url) | |
if not json_data_preview: | |
return ("Failed to fetch basic model info from Civitai. Check URL.", | |
gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)) | |
is_hunyuan = False | |
original_civitai_base_model = "" | |
if json_data_preview.get("type") == "LORA": | |
for mv in json_data_preview.get("modelVersions", []): | |
# Try to find a relevant model version to check its base model | |
# This is a simplified check; extract_info does a more thorough search | |
cbm = mv.get("baseModel") | |
if cbm and cbm in SUPPORTED_CIVITAI_BASE_MODELS: | |
original_civitai_base_model = cbm | |
if cbm == "Hunyuan Video": | |
is_hunyuan = True | |
break | |
# Now call process_url with a default hunyuan_type for other checks | |
# The actual hunyuan_type choice will be used during the main upload. | |
info, _ = process_url(url, profile, do_download=False, hunyuan_type="Image-to-Video") # Use default for check | |
# If process_url raises an error (e.g. NSFW, not supported), it will be caught by Gradio | |
# and displayed as a gr.Error. Here, we assume it passed if no exception. | |
except gr.Error as e: # Catch errors from process_url (like NSFW, not supported) | |
return (f"Cannot process this model: {e.message}", | |
gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=is_hunyuan)) # Show hunyuan if detected | |
except Exception as e: # Catch any other unexpected error during preview | |
print(f"Unexpected error in check_civit_link: {e}") | |
return (f"An unexpected error occurred: {str(e)}", | |
gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=is_hunyuan)) | |
hf_username_on_civitai = extract_huggingface_username(info['creator']) | |
if profile.username in TRUSTED_UPLOADERS: | |
return ('Admin/Trusted user override: Upload enabled.', | |
gr.update(interactive=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=is_hunyuan)) | |
if not hf_username_on_civitai: | |
no_username_text = (f'If you are {info["creator"]} on Civitai, hi! Your CivitAI profile does not seem to have a link to your Hugging Face account. ' | |
f'Please visit <a href="https://civitai.com/user/account" target="_blank">https://civitai.com/user/account</a>, ' | |
f'go to "Edit profile" and add your Hugging Face profile URL (e.g., https://huggingface.co/{profile.username}) to the "Links" section. ' | |
f'<br><img width="60%" src="https://i.imgur.com/hCbo9uL.png" alt="Civitai profile links example"/><br>' | |
f'(If you are not {info["creator"]}, you cannot submit their model at this time.)') | |
return no_username_text, gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=is_hunyuan) | |
if profile.username.lower() != hf_username_on_civitai.lower(): | |
unmatched_username_text = (f'Oops! The Hugging Face username found on the CivitAI profile of {info["creator"]} is ' | |
f'"{hf_username_on_civitai}", but you are logged in as "{profile.username}". ' | |
f'Please ensure your CivitAI profile links to the correct Hugging Face account: ' | |
f'<a href="https://civitai.com/user/account" target="_blank">https://civitai.com/user/account</a> (Edit profile -> Links section).' | |
f'<br><img width="60%" src="https://i.imgur.com/hCbo9uL.png" alt="Civitai profile links example"/>') | |
return unmatched_username_text, gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=is_hunyuan) | |
# All checks passed | |
return ('Username verified! You can now upload this model.', | |
gr.update(interactive=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=is_hunyuan)) | |
def swap_fill(profile: Optional[gr.OAuthProfile]): | |
if profile is None: # Not logged in | |
return gr.update(visible=True), gr.update(visible=False) | |
else: # Logged in | |
return gr.update(visible=False), gr.update(visible=True) | |
def show_output(): | |
return gr.update(visible=True) | |
def list_civit_models(username_civitai: str): | |
if not username_civitai: | |
return "" | |
url = f"https://civitai.com/api/v1/models?username={username_civitai}&limit=100&sort=Newest" # Added sort | |
all_model_urls = "" | |
page_count = 0 | |
max_pages = 5 # Limit number of pages to fetch to avoid very long requests | |
while url and page_count < max_pages: | |
try: | |
response = requests.get(url, timeout=10) | |
response.raise_for_status() | |
data = response.json() | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching model list for {username_civitai}: {e}") | |
gr.Warning(f"Could not fetch full model list for {username_civitai}.") | |
break | |
items = data.get('items', []) | |
if not items: | |
break | |
for model in items: | |
# Only list LORAs of supported base model types to avoid cluttering with unsupported ones | |
is_supported_lora = False | |
if model.get("type") == "LORA": | |
# Check modelVersions for baseModel compatibility | |
for mv in model.get("modelVersions", []): | |
if mv.get("baseModel") in SUPPORTED_CIVITAI_BASE_MODELS: | |
is_supported_lora = True | |
break | |
if is_supported_lora: | |
model_slug = slugify(model.get("name", f"model-{model['id']}")) | |
all_model_urls += f'https://civitai.com/models/{model["id"]}/{model_slug}\n' | |
metadata = data.get('metadata', {}) | |
url = metadata.get('nextPage', None) | |
page_count += 1 | |
if page_count >= max_pages and url: | |
print(f"Reached max page limit for fetching models for {username_civitai}.") | |
gr.Info(f"Showing first {max_pages*100} models. There might be more.") | |
if not all_model_urls: | |
gr.Info(f"No compatible LoRA models found for user {username_civitai} or user not found.") | |
return all_model_urls.strip() | |
def upload_civit_to_hf(profile: Optional[gr.OAuthProfile], oauth_token: Optional[gr.OAuthToken], url: str, link_civit: bool, hunyuan_type: str): | |
if not profile or not profile.username: # Check profile and username | |
raise gr.Error("You must be logged in to Hugging Face to upload.") | |
if not oauth_token or not oauth_token.token: | |
raise gr.Error("Hugging Face authentication token is missing or invalid. Please log out and log back in.") | |
folder = str(uuid.uuid4()) | |
os.makedirs(folder, exist_ok=True) # exist_ok=True is safer if folder might exist | |
gr.Info(f"Starting processing for model {url}") | |
try: | |
# Pass hunyuan_type to process_url | |
info, downloaded_files_summary = process_url(url, profile, do_download=True, folder=folder, hunyuan_type=hunyuan_type) | |
except gr.Error as e: # Catch errors from process_url (NSFW, not supported, API fail) | |
# Cleanup created folder if download failed or was skipped | |
if os.path.exists(folder): | |
try: | |
import shutil | |
shutil.rmtree(folder) | |
except Exception as clean_e: | |
print(f"Error cleaning up folder {folder}: {clean_e}") | |
raise e # Re-raise the Gradio error to display it | |
if not downloaded_files_summary.get("weightName"): | |
raise gr.Error("No model weight file was downloaded. Cannot proceed with upload.") | |
# Determine if user is the author for README generation | |
# This relies on extract_huggingface_username which needs COOKIE_INFO | |
is_author = False | |
if "COOKIE_INFO" in os.environ: | |
hf_username_on_civitai = extract_huggingface_username(info['creator']) | |
if hf_username_on_civitai and profile.username.lower() == hf_username_on_civitai.lower(): | |
is_author = True | |
elif profile.username.lower() == info['creator'].lower(): # Fallback if cookie not set, direct match | |
is_author = True | |
slug_name = slugify(info["name"]) | |
user_repo_id = f"{profile.username}/{slug_name}" | |
gr.Info(f"Creating README for {user_repo_id}...") | |
create_readme(info, downloaded_files_summary, user_repo_id, link_civit, is_author, folder=folder) | |
try: | |
gr.Info(f"Creating repository {user_repo_id} on Hugging Face...") | |
create_repo(repo_id=user_repo_id, private=True, exist_ok=True, token=oauth_token.token) | |
gr.Info(f"Starting upload of all files to {user_repo_id}...") | |
upload_folder( | |
folder_path=folder, | |
repo_id=user_repo_id, | |
repo_type="model", | |
token=oauth_token.token, | |
commit_message=f"Upload LoRA: {info['name']} from Civitai model ID {info['modelId']}" # Add commit message | |
) | |
gr.Info(f"Setting repository {user_repo_id} to public...") | |
update_repo_visibility(repo_id=user_repo_id, private=False, token=oauth_token.token) | |
gr.Info(f"Model {info['name']} uploaded successfully to {user_repo_id}!") | |
except Exception as e: | |
print(f"Error during Hugging Face repo operations for {user_repo_id}: {e}") | |
# Attempt to provide a more specific error message for token issues | |
if "401" in str(e) or "Unauthorized" in str(e): | |
raise gr.Error("Hugging Face authentication failed (e.g. token expired or insufficient permissions). Please log out and log back in with a token that has write permissions.") | |
raise gr.Error(f"Error during Hugging Face upload: {str(e)}") | |
finally: | |
# Clean up the temporary folder | |
if os.path.exists(folder): | |
try: | |
import shutil | |
shutil.rmtree(folder) | |
print(f"Cleaned up temporary folder: {folder}") | |
except Exception as clean_e: | |
print(f"Error cleaning up folder {folder}: {clean_e}") | |
return f"""# Model uploaded to 🤗! | |
Access it here: [{user_repo_id}](https://huggingface.co/{user_repo_id}) | |
""" | |
def bulk_upload(profile: Optional[gr.OAuthProfile], oauth_token: Optional[gr.OAuthToken], urls_text: str, link_civit: bool, hunyuan_type: str): | |
if not urls_text.strip(): | |
return "No URLs provided for bulk upload." | |
urls = [url.strip() for url in urls_text.split("\n") if url.strip()] | |
if not urls: | |
return "No valid URLs found in the input." | |
upload_results_md = "## Bulk Upload Results:\n\n" | |
success_count = 0 | |
failure_count = 0 | |
for i, url in enumerate(urls): | |
gr.Info(f"Processing URL {i+1}/{len(urls)}: {url}") | |
try: | |
result = upload_civit_to_hf(profile, oauth_token, url, link_civit, hunyuan_type) | |
upload_results_md += f"**SUCCESS**: {url}\n{result}\n\n---\n\n" | |
success_count +=1 | |
except gr.Error as e: # Catch Gradio-raised errors (expected failures) | |
upload_results_md += f"**FAILED**: {url}\n*Reason*: {e.message}\n\n---\n\n" | |
gr.Warning(f"Failed to upload {url}: {e.message}") | |
failure_count +=1 | |
except Exception as e: # Catch unexpected Python errors | |
upload_results_md += f"**FAILED**: {url}\n*Unexpected Error*: {str(e)}\n\n---\n\n" | |
gr.Warning(f"Unexpected error uploading {url}: {str(e)}") | |
failure_count +=1 | |
summary = f"Finished bulk upload: {success_count} successful, {failure_count} failed." | |
gr.Info(summary) | |
upload_results_md = f"## {summary}\n\n" + upload_results_md | |
return upload_results_md | |
# --- Gradio UI --- | |
css = ''' | |
#login_button_row button { /* Target login button specifically */ | |
width: 100% !important; | |
margin: 0 auto; | |
} | |
#disabled_upload_area { /* ID for the disabled area */ | |
opacity: 0.5; | |
pointer-events: none; | |
} | |
''' | |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: # Added a theme | |
gr.Markdown('''# Upload your CivitAI LoRA to Hugging Face 🤗 | |
By uploading your LoRAs to Hugging Face you get diffusers compatibility, a free GPU-based Inference Widget (for many models) | |
''') | |
with gr.Row(elem_id="login_button_row"): | |
login_button = gr.LoginButton() # Moved login_button definition here | |
# Area shown when not logged in (or login fails) | |
with gr.Column(elem_id="disabled_upload_area", visible=True) as disabled_area: | |
gr.HTML("<i>Please log in with Hugging Face to enable uploads.</i>") | |
# Add some dummy placeholders to mirror the enabled_area structure if needed for consistent layout | |
gr.Textbox(label="CivitAI model URL (Log in to enable)", interactive=False) | |
gr.Button("Upload (Log in to enable)", interactive=False) | |
# Area shown when logged in | |
with gr.Column(visible=False) as enabled_area: | |
with gr.Row(): | |
submit_source_civit_enabled = gr.Textbox( | |
placeholder="https://civitai.com/models/144684/pixelartredmond-pixel-art-loras-for-sd-xl", | |
label="CivitAI model URL", | |
info="URL of the CivitAI LoRA model page.", | |
elem_id="submit_source_civit_main" # Unique ID | |
) | |
hunyuan_type_radio = gr.Radio( | |
choices=["Image-to-Video", "Text-to-Video"], | |
label="HunyuanVideo Type (Select if model is Hunyuan Video)", | |
value="Image-to-Video", # Default as per prompt | |
visible=False, # Initially hidden | |
interactive=True | |
) | |
link_civit_checkbox = gr.Checkbox(label="Link back to original CivitAI page in README?", value=False) | |
with gr.Accordion("Bulk Upload (Multiple LoRAs)", open=False): | |
civit_username_to_bulk = gr.Textbox( | |
label="Your CivitAI Username (Optional)", | |
info="Type your CivitAI username here to automatically populate the list below with your compatible LoRAs." | |
) | |
submit_bulk_civit_urls = gr.Textbox( | |
label="CivitAI Model URLs (One per line)", | |
info="Add one CivitAI model URL per line for bulk processing.", | |
lines=6, | |
) | |
bulk_button = gr.Button("Start Bulk Upload") | |
instructions_html = gr.HTML("") # For messages from check_civit_link | |
# Buttons for single upload | |
# try_again_button is shown if username check fails | |
try_again_button_single = gr.Button("I've updated my CivitAI profile, check again", visible=False) | |
# submit_button_single is the main upload button for single model | |
submit_button_single = gr.Button("Upload Model to Hugging Face", interactive=False, variant="primary") | |
output_markdown = gr.Markdown(label="Upload Progress & Results", visible=False) | |
# Event Handling | |
# When login status changes (login_button implicitly handles profile state for demo.load) | |
# demo.load updates visibility of disabled_area and enabled_area based on login. | |
# The `profile` argument is implicitly passed by Gradio to functions that declare it. | |
# `oauth_token` is also implicitly passed if `login_button` is used and function expects `gr.OAuthToken`. | |
# When URL changes in the enabled area | |
submit_source_civit_enabled.change( | |
fn=check_civit_link, | |
inputs=[submit_source_civit_enabled], # profile is implicitly passed | |
outputs=[instructions_html, submit_button_single, try_again_button_single, submit_button_single, hunyuan_type_radio], | |
# Outputs map to: instructions, submit_interactive, try_again_visible, (submit_visible - seems redundant here, check_civit_link logic ensures one is visible), hunyuan_radio_visible | |
# For submit_button_single: 2nd output controls 'interactive', 4th controls 'visible' (often paired with try_again_button's visibility) | |
) | |
# Try again button for single upload (re-checks the same URL) | |
try_again_button_single.click( | |
fn=check_civit_link, | |
inputs=[submit_source_civit_enabled], | |
outputs=[instructions_html, submit_button_single, try_again_button_single, submit_button_single, hunyuan_type_radio], | |
) | |
# Autofill bulk URLs from CivitAI username | |
civit_username_to_bulk.change( | |
fn=list_civit_models, | |
inputs=[civit_username_to_bulk], | |
outputs=[submit_bulk_civit_urls] | |
) | |
# Single model upload button click | |
submit_button_single.click(fn=show_output, outputs=[output_markdown]).then( | |
fn=upload_civit_to_hf, | |
inputs=[submit_source_civit_enabled, link_civit_checkbox, hunyuan_type_radio], # profile, oauth_token implicit | |
outputs=[output_markdown] | |
) | |
# Bulk model upload button click | |
bulk_button.click(fn=show_output, outputs=[output_markdown]).then( | |
fn=bulk_upload, | |
inputs=[submit_bulk_civit_urls, link_civit_checkbox, hunyuan_type_radio], # profile, oauth_token implicit | |
outputs=[output_markdown] | |
) | |
# Initial state of visible areas based on login status | |
demo.load(fn=swap_fill, outputs=[disabled_area, enabled_area], queue=False) | |
demo.queue(default_concurrency_limit=5) # Reduced concurrency from 50, can be demanding | |
demo.launch(debug=True) # Added debug=True for development |