A newer version of the Gradio SDK is available:
5.22.0
metadata
title: HTER
emoji: 🤗
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 3.19.1
app_file: app.py
pinned: false
tags:
- evaluate
- metric
description: >-
HTER (Half Total Error Rate) is a metric that combines the False Accept Rate
(FAR) and False Reject Rate (FRR) to provide a comprehensive evaluation of a
system's performance. It can be computed with: HTER = (FAR + FRR) / 2 Where:
FAR (False Accept Rate) = FP / (FP + TN) FRR (False Reject Rate) = FN / (FN +
TP) TP: True positive TN: True negative FP: False positive FN: False negative
Metric Card for HTER
Metric Description
HTER (Half Total Error Rate) is a metric that combines the False Accept Rate (FAR) and False Reject Rate (FRR) to provide a comprehensive evaluation of a system's performance. It can be computed with:
HTER = (FAR + FRR) / 2
Where:
FAR (False Accept Rate) = FP / (FP + TN)
FRR (False Reject Rate) = FN / (FN + TP)
TP: True positive
TN: True negative
FP: False positive
FN: False negative
How to Use
At minimum, this metric requires predictions and references as inputs.
>>> hter_metric = evaluate.load("murinj/hter")
>>> results = hter_metric.compute(references=[0, 0], predictions=[0, 1])
>>> print(results)
{'HTER': 0.25}
Inputs
- predictions (
list
ofint
): Predicted labels. - references (
list
ofint
): Ground truth labels.
Output Values
- HTER(
float
orint
): HTER score. Minimum possible value is 0. Maximum possible value is 1.0.
Output Example(s):
{'HTER': 0.0}
This metric outputs a dictionary, containing the HTER score.