File size: 6,461 Bytes
83578c9
 
ffe27dd
611bd3a
 
9dd07e2
611bd3a
8009a95
 
611bd3a
 
 
9dd07e2
8009a95
9dd07e2
 
8009a95
 
9dd07e2
8009a95
ba22319
9dd07e2
ffe27dd
9dd07e2
 
 
 
 
 
 
 
 
 
ffe27dd
 
 
 
9dd07e2
 
ffe27dd
 
 
 
 
 
 
 
 
9dd07e2
 
 
 
 
 
ffe27dd
9dd07e2
ffe27dd
 
 
9dd07e2
 
 
 
 
 
 
 
ffe27dd
9dd07e2
ffe27dd
 
 
 
 
 
9dd07e2
ffe27dd
8009a95
ffe27dd
 
 
42b1be9
ffe27dd
 
 
 
 
9dd07e2
8009a95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aaf803
8009a95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aaf803
8009a95
3aaf803
 
 
 
 
 
 
8009a95
3aaf803
 
8009a95
3aaf803
 
 
8009a95
3aaf803
8009a95
3aaf803
8009a95
3aaf803
 
 
 
 
 
8009a95
 
3aaf803
 
 
8009a95
 
 
 
 
59dcf4a
9dd07e2
 
 
0fceaca
ba22319
9dd07e2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# notes https://huggingface.co/spaces/Joeythemonster/Text-To-image-AllModels/blob/main/app.py

import tensorflow as tf
from diffusers import DiffusionPipeline
import spaces
# import torch
import PIL.Image
from PIL import Image
from torch.autograd import Variable
import gradio as gr
import gradio.components as grc
import numpy as np
from huggingface_hub import from_pretrained_keras
from image_similarity_measures.evaluate import evaluation
import keras
import time
import requests
import matplotlib.pyplot as plt
import os 
from pytorch_msssim import ssim, ms_ssim, SSIM, MS_SSIM
from gradio_imageslider import ImageSlider

# os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'

# options = ['Placeholder A', 'Placeholder B', 'Placeholder C']


# pipeline = DiffusionPipeline.from_pretrained("nathanReitinger/MNIST-diffusion-oneImage")
# device = "cuda" if torch.cuda.is_available() else "cpu"
# pipeline = pipeline.to(device=device)

# @spaces.GPU
# def predict(steps, seed):
#		 print("HI")
#		 generator = torch.manual_seed(seed)
#		 for i in range(1,steps):
#				 yield pipeline(generator=generator, num_inference_steps=i).images[0]

# gr.Interface(
#		 predict,
#		 inputs=[
#				 grc.Slider(0, 1000, label='Inference Steps', value=42, step=1),
#				 grc.Slider(0, 2147483647, label='Seed', value=42, step=1),
#		 ],
#		 outputs=gr.Image(height=28, width=28, type="pil", elem_id="output_image"),
#		 css="#output_image{width: 256px !important; height: 256px !important;}",
#		 title="Model Problems: Infringing on MNIST!",
#		 description="Opening the black box.",
# ).queue().launch()


from diffusers import StableDiffusionPipeline
import torch


modellist=['nathanReitinger/MNIST-diffusion-oneImage',
	'nathanReitinger/MNIST-diffusion',
#	'nathanReitinger/MNIST-GAN', 
#	'nathanReitinger/MNIST-GAN-noDropout'
 ]

# pipeline = DiffusionPipeline.from_pretrained("nathanReitinger/MNIST-diffusion-oneImage")
# device = "cuda" if torch.cuda.is_available() else "cpu"
# pipeline = pipeline.to(device=device)


def getModel(model):
	model_id = model

	(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
	RANDO = str(time.time())
	file_path = 'tester/' + model_id.replace("/", "-") + "/" + RANDO + '/'
	os.makedirs(file_path)
	train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
	train_images = (train_images - 127.5) / 127.5	# Normalize the images to [-1, 1]

	print(model_id)
	image = None
	if 'diffusion' in model_id:
		pipe = DiffusionPipeline.from_pretrained(model_id)
		pipe = pipe.to("cpu")
		image = pipe(generator= torch.manual_seed(42), num_inference_steps=1).images[0]
	else:
		pipe = DiffusionPipeline.from_pretrained('nathanReitinger/MNIST-diffusion')
		pipe = pipe.to("cpu")
		test = from_pretrained_keras('nathanReitinger/MNIST-GAN')
		image = pipe(generator= torch.manual_seed(42), num_inference_steps=40).images[0]

	########################################### let's save this image for comparison to others
	fig = plt.figure(figsize=(1, 1))
	plt.subplot(1, 1, 0+1)
	plt.imshow(image, cmap='gray')
	plt.axis('off')
	plt.savefig(file_path + 'generated_image.png')
	plt.close()

	API_URL = "https://api-inference.huggingface.co/models/farleyknight/mnist-digit-classification-2022-09-04"

	# get a prediction on what number this is
	def query(filename):
		with open(filename, "rb") as f:
			data = f.read()
		response = requests.post(API_URL, data=data)
		return response.json()

	# use latest model to generate a new image, return path
	ret = False 
	output = None
	while ret == False:
		output = query(file_path + 'generated_image.png')
		if 'error' in output:
			time.sleep(10)
			ret = False 
		else:
			ret = True
	print(output)

	low_score_log = ''
	this_label_for_this_image = int(output[0]['label'])
	low_score_log += "this image has been identified as a:" + str(this_label_for_this_image) + "\n" + str(output) + "\n"
	print("===================")

	lowest_score = 10000
	lowest_image = None

	for i in range(len(train_labels)):
		# print(i)
		if train_labels[i] == this_label_for_this_image:

				###
				# get a real image (of correct number)
				###

				# print(i)
				to_check = train_images[i]
				fig = plt.figure(figsize=(1, 1))
				plt.subplot(1, 1, 0+1)
				plt.imshow(to_check, cmap='gray')
				plt.axis('off')
				plt.savefig(file_path + 'real_deal.png')
				plt.close()

				# baseline = evaluation(org_img_path='results/real_deal.png', pred_img_path='results/real_deal.png', metrics=["rmse", "psnr"])
				# print("---")

				###
				# check how close that real training data is to generated number
				###
				results = evaluation(org_img_path=file_path + 'real_deal.png', pred_img_path=file_path+'generated_image.png', metrics=["rmse", "psnr"])
				if results['rmse'] < lowest_score:

					lowest_score = results['rmse']
					lowest_image = to_check

					# image1 = np.array(Image.open(file_path + 'real_deal.png'))
					# image2 = np.array(Image.open(file_path + 'generated_image.png'))
					# img1 = torch.from_numpy(image1).float().unsqueeze(0).unsqueeze(0)/255.0
					# img2 = torch.from_numpy(image2).float().unsqueeze(0).unsqueeze(0)/255.0
					# img1 = Variable( img1,	requires_grad=False)
					# img2 = Variable( img2,	requires_grad=True)
					# ssim_score = ssim(img1, img2).item()

					# # sys.exit()
					# # l2 = distance.euclidean(image1, image2)

					# low_score_log += 'rmse score:' + str(lowest_score) + "\n"
					# low_score_log += 'ssim score:' + str(ssim_score) + "\n"
					# low_score_log += 'found when:' + str(round( ((i/len(train_labels)) * 100),2 )) + '%' + "\n"

					# low_score_log += "---------\n"
					
					# print(lowest_score, ssim_score, str(round( ((i/len(train_labels)) * 100),2 )) + '%')

					# fig = plt.figure(figsize=(1, 1))
					# plt.subplot(1, 1, 0+1)
					# plt.imshow(to_check, cmap='gray')
					# plt.axis('off')
					# plt.savefig(file_path+str(i) + "--" + str(lowest_score) + '---most_close.png')
					# plt.close()

								
	# f = open(file_path + "score_log.txt", "w+")
	# f.write(low_score_log)
	# f.close()

	print("Done!")


	############################################ return image that you just generated
	return [image, lowest_image]


import gradio as gr
output = "image"
interface = gr.Interface(fn=getModel, inputs=[gr.Dropdown(modellist)], css="#output_image{width: 256px !important; height: 256px !important;}", outputs=output,  title='Model Problems (infringement)') # outputs="image",
interface.launch()