Spaces:
Runtime error
Runtime error
File size: 6,461 Bytes
83578c9 ffe27dd 611bd3a 9dd07e2 611bd3a 8009a95 611bd3a 9dd07e2 8009a95 9dd07e2 8009a95 9dd07e2 8009a95 ba22319 9dd07e2 ffe27dd 9dd07e2 ffe27dd 9dd07e2 ffe27dd 9dd07e2 ffe27dd 9dd07e2 ffe27dd 9dd07e2 ffe27dd 9dd07e2 ffe27dd 9dd07e2 ffe27dd 8009a95 ffe27dd 42b1be9 ffe27dd 9dd07e2 8009a95 3aaf803 8009a95 3aaf803 8009a95 3aaf803 8009a95 3aaf803 8009a95 3aaf803 8009a95 3aaf803 8009a95 3aaf803 8009a95 3aaf803 8009a95 3aaf803 8009a95 59dcf4a 9dd07e2 0fceaca ba22319 9dd07e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# notes https://huggingface.co/spaces/Joeythemonster/Text-To-image-AllModels/blob/main/app.py
import tensorflow as tf
from diffusers import DiffusionPipeline
import spaces
# import torch
import PIL.Image
from PIL import Image
from torch.autograd import Variable
import gradio as gr
import gradio.components as grc
import numpy as np
from huggingface_hub import from_pretrained_keras
from image_similarity_measures.evaluate import evaluation
import keras
import time
import requests
import matplotlib.pyplot as plt
import os
from pytorch_msssim import ssim, ms_ssim, SSIM, MS_SSIM
from gradio_imageslider import ImageSlider
# os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'
# options = ['Placeholder A', 'Placeholder B', 'Placeholder C']
# pipeline = DiffusionPipeline.from_pretrained("nathanReitinger/MNIST-diffusion-oneImage")
# device = "cuda" if torch.cuda.is_available() else "cpu"
# pipeline = pipeline.to(device=device)
# @spaces.GPU
# def predict(steps, seed):
# print("HI")
# generator = torch.manual_seed(seed)
# for i in range(1,steps):
# yield pipeline(generator=generator, num_inference_steps=i).images[0]
# gr.Interface(
# predict,
# inputs=[
# grc.Slider(0, 1000, label='Inference Steps', value=42, step=1),
# grc.Slider(0, 2147483647, label='Seed', value=42, step=1),
# ],
# outputs=gr.Image(height=28, width=28, type="pil", elem_id="output_image"),
# css="#output_image{width: 256px !important; height: 256px !important;}",
# title="Model Problems: Infringing on MNIST!",
# description="Opening the black box.",
# ).queue().launch()
from diffusers import StableDiffusionPipeline
import torch
modellist=['nathanReitinger/MNIST-diffusion-oneImage',
'nathanReitinger/MNIST-diffusion',
# 'nathanReitinger/MNIST-GAN',
# 'nathanReitinger/MNIST-GAN-noDropout'
]
# pipeline = DiffusionPipeline.from_pretrained("nathanReitinger/MNIST-diffusion-oneImage")
# device = "cuda" if torch.cuda.is_available() else "cpu"
# pipeline = pipeline.to(device=device)
def getModel(model):
model_id = model
(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
RANDO = str(time.time())
file_path = 'tester/' + model_id.replace("/", "-") + "/" + RANDO + '/'
os.makedirs(file_path)
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
train_images = (train_images - 127.5) / 127.5 # Normalize the images to [-1, 1]
print(model_id)
image = None
if 'diffusion' in model_id:
pipe = DiffusionPipeline.from_pretrained(model_id)
pipe = pipe.to("cpu")
image = pipe(generator= torch.manual_seed(42), num_inference_steps=1).images[0]
else:
pipe = DiffusionPipeline.from_pretrained('nathanReitinger/MNIST-diffusion')
pipe = pipe.to("cpu")
test = from_pretrained_keras('nathanReitinger/MNIST-GAN')
image = pipe(generator= torch.manual_seed(42), num_inference_steps=40).images[0]
########################################### let's save this image for comparison to others
fig = plt.figure(figsize=(1, 1))
plt.subplot(1, 1, 0+1)
plt.imshow(image, cmap='gray')
plt.axis('off')
plt.savefig(file_path + 'generated_image.png')
plt.close()
API_URL = "https://api-inference.huggingface.co/models/farleyknight/mnist-digit-classification-2022-09-04"
# get a prediction on what number this is
def query(filename):
with open(filename, "rb") as f:
data = f.read()
response = requests.post(API_URL, data=data)
return response.json()
# use latest model to generate a new image, return path
ret = False
output = None
while ret == False:
output = query(file_path + 'generated_image.png')
if 'error' in output:
time.sleep(10)
ret = False
else:
ret = True
print(output)
low_score_log = ''
this_label_for_this_image = int(output[0]['label'])
low_score_log += "this image has been identified as a:" + str(this_label_for_this_image) + "\n" + str(output) + "\n"
print("===================")
lowest_score = 10000
lowest_image = None
for i in range(len(train_labels)):
# print(i)
if train_labels[i] == this_label_for_this_image:
###
# get a real image (of correct number)
###
# print(i)
to_check = train_images[i]
fig = plt.figure(figsize=(1, 1))
plt.subplot(1, 1, 0+1)
plt.imshow(to_check, cmap='gray')
plt.axis('off')
plt.savefig(file_path + 'real_deal.png')
plt.close()
# baseline = evaluation(org_img_path='results/real_deal.png', pred_img_path='results/real_deal.png', metrics=["rmse", "psnr"])
# print("---")
###
# check how close that real training data is to generated number
###
results = evaluation(org_img_path=file_path + 'real_deal.png', pred_img_path=file_path+'generated_image.png', metrics=["rmse", "psnr"])
if results['rmse'] < lowest_score:
lowest_score = results['rmse']
lowest_image = to_check
# image1 = np.array(Image.open(file_path + 'real_deal.png'))
# image2 = np.array(Image.open(file_path + 'generated_image.png'))
# img1 = torch.from_numpy(image1).float().unsqueeze(0).unsqueeze(0)/255.0
# img2 = torch.from_numpy(image2).float().unsqueeze(0).unsqueeze(0)/255.0
# img1 = Variable( img1, requires_grad=False)
# img2 = Variable( img2, requires_grad=True)
# ssim_score = ssim(img1, img2).item()
# # sys.exit()
# # l2 = distance.euclidean(image1, image2)
# low_score_log += 'rmse score:' + str(lowest_score) + "\n"
# low_score_log += 'ssim score:' + str(ssim_score) + "\n"
# low_score_log += 'found when:' + str(round( ((i/len(train_labels)) * 100),2 )) + '%' + "\n"
# low_score_log += "---------\n"
# print(lowest_score, ssim_score, str(round( ((i/len(train_labels)) * 100),2 )) + '%')
# fig = plt.figure(figsize=(1, 1))
# plt.subplot(1, 1, 0+1)
# plt.imshow(to_check, cmap='gray')
# plt.axis('off')
# plt.savefig(file_path+str(i) + "--" + str(lowest_score) + '---most_close.png')
# plt.close()
# f = open(file_path + "score_log.txt", "w+")
# f.write(low_score_log)
# f.close()
print("Done!")
############################################ return image that you just generated
return [image, lowest_image]
import gradio as gr
output = "image"
interface = gr.Interface(fn=getModel, inputs=[gr.Dropdown(modellist)], css="#output_image{width: 256px !important; height: 256px !important;}", outputs=output, title='Model Problems (infringement)') # outputs="image",
interface.launch()
|