Spaces:
Runtime error
Runtime error
import os | |
import random | |
import sys | |
from typing import Sequence, Mapping, Any, Union | |
import torch | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
import spaces | |
from comfy import model_management | |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", filename="flux1-redux-dev.safetensors", local_dir="models/style_models") | |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Depth-dev", filename="flux1-depth-dev.safetensors", local_dir="models/diffusion_models") | |
hf_hub_download(repo_id="Comfy-Org/sigclip_vision_384", filename="sigclip_vision_patch14_384.safetensors", local_dir="models/clip_vision") | |
hf_hub_download(repo_id="Kijai/DepthAnythingV2-safetensors", filename="depth_anything_v2_vitl_fp32.safetensors", local_dir="models/depthanything") | |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors", local_dir="models/vae/FLUX1") | |
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="clip_l.safetensors", local_dir="models/text_encoders") | |
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp16.safetensors", local_dir="models/text_encoders/t5") | |
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: | |
"""Returns the value at the given index of a sequence or mapping. | |
If the object is a sequence (like list or string), returns the value at the given index. | |
If the object is a mapping (like a dictionary), returns the value at the index-th key. | |
Some return a dictionary, in these cases, we look for the "results" key | |
Args: | |
obj (Union[Sequence, Mapping]): The object to retrieve the value from. | |
index (int): The index of the value to retrieve. | |
Returns: | |
Any: The value at the given index. | |
Raises: | |
IndexError: If the index is out of bounds for the object and the object is not a mapping. | |
""" | |
try: | |
return obj[index] | |
except KeyError: | |
return obj["result"][index] | |
def find_path(name: str, path: str = None) -> str: | |
""" | |
Recursively looks at parent folders starting from the given path until it finds the given name. | |
Returns the path as a Path object if found, or None otherwise. | |
""" | |
# If no path is given, use the current working directory | |
if path is None: | |
path = os.getcwd() | |
# Check if the current directory contains the name | |
if name in os.listdir(path): | |
path_name = os.path.join(path, name) | |
print(f"{name} found: {path_name}") | |
return path_name | |
# Get the parent directory | |
parent_directory = os.path.dirname(path) | |
# If the parent directory is the same as the current directory, we've reached the root and stop the search | |
if parent_directory == path: | |
return None | |
# Recursively call the function with the parent directory | |
return find_path(name, parent_directory) | |
def add_comfyui_directory_to_sys_path() -> None: | |
""" | |
Add 'ComfyUI' to the sys.path | |
""" | |
comfyui_path = find_path("ComfyUI") | |
if comfyui_path is not None and os.path.isdir(comfyui_path): | |
sys.path.append(comfyui_path) | |
print(f"'{comfyui_path}' added to sys.path") | |
def add_extra_model_paths() -> None: | |
""" | |
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path. | |
""" | |
# Ensure custom_nodes directory exists | |
custom_nodes_path = os.path.join(os.getcwd(), "custom_nodes") | |
if not os.path.exists(custom_nodes_path): | |
os.makedirs(custom_nodes_path) | |
print(f"Created custom_nodes directory at: {custom_nodes_path}") | |
try: | |
from main import load_extra_path_config | |
except ImportError: | |
print( | |
"Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead." | |
) | |
from utils.extra_config import load_extra_path_config | |
extra_model_paths = find_path("extra_model_paths.yaml") | |
if extra_model_paths is not None: | |
load_extra_path_config(extra_model_paths) | |
else: | |
print("Could not find the extra_model_paths config file.") | |
add_comfyui_directory_to_sys_path() | |
add_extra_model_paths() | |
def import_custom_nodes() -> None: | |
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS | |
This function sets up a new asyncio event loop, initializes the PromptServer, | |
creates a PromptQueue, and initializes the custom nodes. | |
""" | |
import asyncio | |
import execution | |
from nodes import init_extra_nodes | |
import server | |
# Creating a new event loop and setting it as the default loop | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
# Creating an instance of PromptServer with the loop | |
server_instance = server.PromptServer(loop) | |
execution.PromptQueue(server_instance) | |
# Initializing custom nodes | |
init_extra_nodes() | |
# Initialize nodes before using them | |
import_custom_nodes() | |
# Now import and use NODE_CLASS_MAPPINGS | |
from nodes import NODE_CLASS_MAPPINGS | |
# Create instances of the nodes we'll use | |
try: | |
# Load required models | |
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]() | |
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]() | |
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]() | |
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]() | |
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]() | |
# Image processing nodes | |
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]() | |
imagescale = NODE_CLASS_MAPPINGS["ImageScale"]() | |
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]() | |
vaeencode = NODE_CLASS_MAPPINGS["VAEEncode"]() | |
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]() | |
# Conditioning and sampling nodes | |
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() | |
ksampler = NODE_CLASS_MAPPINGS["KSampler"]() | |
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]() | |
except KeyError as e: | |
print(f"Error: Could not find node {e} in NODE_CLASS_MAPPINGS") | |
print("Available nodes:", list(NODE_CLASS_MAPPINGS.keys())) | |
raise | |
# Load all the models that need a safetensors file | |
model_loaders = [ | |
dualcliploader.load_clip( | |
clip_name1="t5/t5xxl_fp16.safetensors", | |
clip_name2="clip_l.safetensors", | |
type="flux", | |
), | |
vaeloader.load_vae("vae/FLUX1/ae.safetensors"), | |
unetloader.load_unet("diffusion_models/flux1-depth-dev.safetensors"), | |
clipvisionloader.load_clip("clip_vision/sigclip_vision_patch14_384.safetensors"), | |
stylemodelloader.load_style_model("style_models/flux1-redux-dev.safetensors") | |
] | |
# Check which models are valid | |
valid_models = [ | |
model for model in model_loaders | |
if model is not None and len(model) > 0 | |
] | |
def generate_image(prompt, structure_image, style_image, depth_strength, style_strength): | |
with torch.inference_mode(): | |
# Set up image dimensions | |
width = 1024 | |
height = 1024 | |
# Load and process the input images | |
loaded_structure = loadimage.load_image(structure_image) | |
loaded_style = loadimage.load_image(style_image) | |
# Scale images if needed | |
scaled_structure = imagescale.upscale(loaded_structure, width, height, "lanczos", "center") | |
scaled_style = imagescale.upscale(loaded_style, width, height, "lanczos", "center") | |
# Create empty latent | |
latent = emptylatentimage.generate(width, height, 1) | |
# Encode the prompt | |
conditioning = cliptextencode.encode( | |
clip=get_value_at_index(dualcliploader.load_clip( | |
clip_name1="t5/t5xxl_fp16.safetensors", | |
clip_name2="clip_l.safetensors", | |
type="flux", | |
), 0), | |
text=prompt | |
) | |
# Sample the image | |
sampled = ksampler.sample( | |
model=get_value_at_index(unetloader.load_unet("diffusion_models/flux1-depth-dev.safetensors"), 0), | |
positive=conditioning, | |
negative=None, | |
latent=latent, | |
seed=random.randint(1, 2**32), | |
steps=20, | |
cfg=7.5, | |
sampler_name="euler", | |
scheduler="normal", | |
denoise=1.0, | |
) | |
# Decode the latent to image | |
decoded = vaedecode.decode( | |
samples=sampled, | |
vae=get_value_at_index(vaeloader.load_vae("vae/FLUX1/ae.safetensors"), 0) | |
) | |
# Save the final image | |
saved = saveimage.save_images(decoded) | |
return saved | |
if __name__ == "__main__": | |
# Comment out the main() call | |
# Start your Gradio app | |
with gr.Blocks() as app: | |
# Add a title | |
gr.Markdown("# FLUX Style Shaping") | |
with gr.Row(): | |
with gr.Column(): | |
# Add an input | |
prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...") | |
# Add a `Row` to include the groups side by side | |
with gr.Row(): | |
# First group includes structure image and depth strength | |
with gr.Group(): | |
structure_image = gr.Image(label="Structure Image", type="filepath") | |
depth_strength = gr.Slider(minimum=0, maximum=50, value=15, label="Depth Strength") | |
# Second group includes style image and style strength | |
with gr.Group(): | |
style_image = gr.Image(label="Style Image", type="filepath") | |
style_strength = gr.Slider(minimum=0, maximum=1, value=0.5, label="Style Strength") | |
# The generate button | |
generate_btn = gr.Button("Generate") | |
with gr.Column(): | |
# The output image | |
output_image = gr.Image(label="Generated Image") | |
# When clicking the button, it will trigger the `generate_image` function, with the respective inputs | |
# and the output an image | |
generate_btn.click( | |
fn=generate_image, | |
inputs=[prompt_input, structure_image, style_image, depth_strength, style_strength], | |
outputs=[output_image] | |
) | |
app.launch(share=True) |