Spaces:
Build error
Build error
File size: 3,504 Bytes
6c5f0dc 5fec869 6c5f0dc 5fec869 6c5f0dc 5fec869 6c5f0dc 5fec869 6c5f0dc 5fec869 6c5f0dc 5fec869 28145d9 6c5f0dc 5fec869 6c5f0dc 5fec869 6c5f0dc 5fec869 6c5f0dc 5fec869 6c5f0dc 5fec869 6c5f0dc 5fec869 28145d9 5fec869 28145d9 5fec869 28145d9 5fec869 28145d9 5fec869 28145d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
import streamlit as st
from PIL import Image
import face_recognition
import cv2
import numpy as np
import os
from datetime import datetime
st.title("AIMLJan24 - Face Recognition")
# Load images for face recognition
Images = []
classnames = []
directory = "photos"
myList = os.listdir(directory)
st.write("Photographs found in folder : ")
for cls in myList:
if os.path.splitext(cls)[1] in [".jpg", ".jpeg"]:
img_path = os.path.join(directory, cls)
curImg = cv2.imread(img_path)
Images.append(curImg)
st.write(os.path.splitext(cls)[0])
classnames.append(os.path.splitext(cls)[0])
# Load images for face recognition
encodeListknown = [face_recognition.face_encodings(img)[0] for img in Images]
# camera to take photo of user in question
file_name = st.file_uploader("Upload image")
def add_attendance(name):
username = name
current_datetime = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print(current_datetime)
if not os.path.isdir('Attendance'):
os.makedirs('Attendance')
if f'Attendance-{current_datetime}.csv' not in os.listdir('Attendance'):
with open(f'Attendance/Attendance-{current_datetime}.csv', 'w') as f:
f.write('Name,Time')
if file_name is not None:
col1, col2 = st.columns(2)
test_image = Image.open(file_name)
image = np.asarray(test_image)
imgS = cv2.resize(image, (0, 0), None, 0.25, 0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
facesCurFrame = face_recognition.face_locations(imgS)
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)
# List to store recognized names for all faces in the image
recognized_names = []
# Checking if faces are detected
if len(encodesCurFrame) > 0:
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
# Assuming that encodeListknown is defined and populated in your code
matches = face_recognition.compare_faces(encodeListknown, encodeFace)
faceDis = face_recognition.face_distance(encodeListknown, encodeFace)
# Initialize name as Unknown
name = "Unknown"
# Check if there's a match with known faces
if True in matches:
matchIndex = np.argmin(faceDis)
name = classnames[matchIndex].upper()
# Append recognized name to the list
recognized_names.append(name)
# Draw rectangle and label on the image
y1, x2, y2, x1 = faceLoc
y1, x2, y2, x1 = (y1 * 4), (x2 * 4), (y2 * 4) ,(x1 * 4)
# Make a copy of the image array before drawing on it
image_copy = image.copy()
cv2.rectangle(image_copy, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.rectangle(image_copy, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED)
cv2.putText(image_copy, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)
# Update the database
add_attendance(name)
# Display the image with recognized names
st.image(image_copy, use_column_width=True, output_format="PNG")
# Display recognized names
st.write("Recognized Names:")
for i, name in enumerate(recognized_names):
st.write(f"Face {i+1}: {name}")
else:
st.warning("No faces detected in the image. Face recognition failed.") |