Token Usage
By default LiteLLM returns token usage in all completion requests (See here)
However, we also expose 3 public helper functions to calculate token usage across providers:
token_counter
: This returns the number of tokens for a given input - it uses the tokenizer based on the model, and defaults to tiktoken if no model-specific tokenizer is available.cost_per_token
: This returns the cost (in USD) for prompt (input) and completion (output) tokens. It utilizes our model_cost map which can be found in__init__.py
and also as a community resource.completion_cost
: This returns the overall cost (in USD) for a given LLM API Call. It combinestoken_counter
andcost_per_token
to return the cost for that query (counting both cost of input and output).
Example Usage
token_counter
from litellm import token_counter
messages = [{"user": "role", "content": "Hey, how's it going"}]
print(token_counter(model="gpt-3.5-turbo", messages=messages))
cost_per_token
from litellm import cost_per_token
prompt_tokens = 5
completion_tokens = 10
prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = cost_per_token(model="gpt-3.5-turbo", prompt_tokens=prompt_tokens, completion_tokens=completion_tokens))
print(prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar)
completion_cost
from litellm import completion_cost
prompt = "Hey, how's it going"
completion = "Hi, I'm gpt - I am doing well"
cost_of_query = completion_cost(model="gpt-3.5-turbo", prompt=prompt, completion=completion))
print(cost_of_query)