nnnn / docs /my-website /src /pages /token_usage.md
nonhuman's picture
Upload 225 files
4ec8dba
|
raw
history blame
1.77 kB

Token Usage

By default LiteLLM returns token usage in all completion requests (See here)

However, we also expose 3 public helper functions to calculate token usage across providers:

  • token_counter: This returns the number of tokens for a given input - it uses the tokenizer based on the model, and defaults to tiktoken if no model-specific tokenizer is available.

  • cost_per_token: This returns the cost (in USD) for prompt (input) and completion (output) tokens. It utilizes our model_cost map which can be found in __init__.py and also as a community resource.

  • completion_cost: This returns the overall cost (in USD) for a given LLM API Call. It combines token_counter and cost_per_token to return the cost for that query (counting both cost of input and output).

Example Usage

  1. token_counter
from litellm import token_counter

messages = [{"user": "role", "content": "Hey, how's it going"}]
print(token_counter(model="gpt-3.5-turbo", messages=messages))
  1. cost_per_token
from litellm import cost_per_token

prompt_tokens =  5
completion_tokens = 10
prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = cost_per_token(model="gpt-3.5-turbo", prompt_tokens=prompt_tokens, completion_tokens=completion_tokens))

print(prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar)
  1. completion_cost
from litellm import completion_cost

prompt = "Hey, how's it going"
completion = "Hi, I'm gpt - I am doing well"
cost_of_query = completion_cost(model="gpt-3.5-turbo", prompt=prompt, completion=completion))

print(cost_of_query)