|
# Token Usage |
|
By default LiteLLM returns token usage in all completion requests ([See here](https://litellm.readthedocs.io/en/latest/output/)) |
|
|
|
However, we also expose 3 public helper functions to calculate token usage across providers: |
|
|
|
- `token_counter`: This returns the number of tokens for a given input - it uses the tokenizer based on the model, and defaults to tiktoken if no model-specific tokenizer is available. |
|
|
|
- `cost_per_token`: This returns the cost (in USD) for prompt (input) and completion (output) tokens. It utilizes our model_cost map which can be found in `__init__.py` and also as a [community resource](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json). |
|
|
|
- `completion_cost`: This returns the overall cost (in USD) for a given LLM API Call. It combines `token_counter` and `cost_per_token` to return the cost for that query (counting both cost of input and output). |
|
|
|
## Example Usage |
|
|
|
1. `token_counter` |
|
|
|
```python |
|
from litellm import token_counter |
|
|
|
messages = [{"user": "role", "content": "Hey, how's it going"}] |
|
print(token_counter(model="gpt-3.5-turbo", messages=messages)) |
|
``` |
|
|
|
2. `cost_per_token` |
|
|
|
```python |
|
from litellm import cost_per_token |
|
|
|
prompt_tokens = 5 |
|
completion_tokens = 10 |
|
prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar = cost_per_token(model="gpt-3.5-turbo", prompt_tokens=prompt_tokens, completion_tokens=completion_tokens)) |
|
|
|
print(prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar) |
|
``` |
|
|
|
3. `completion_cost` |
|
|
|
```python |
|
from litellm import completion_cost |
|
|
|
prompt = "Hey, how's it going" |
|
completion = "Hi, I'm gpt - I am doing well" |
|
cost_of_query = completion_cost(model="gpt-3.5-turbo", prompt=prompt, completion=completion)) |
|
|
|
print(cost_of_query) |
|
``` |
|
|