Spaces:
Runtime error
Runtime error
import mxnet as mx | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from collections import namedtuple | |
from mxnet.gluon.data.vision import transforms | |
import os | |
import gradio as gr | |
from PIL import Image | |
import imageio | |
import onnxruntime as ort | |
mx.test_utils.download('https://s3.amazonaws.com/model-server/inputs/kitten.jpg') | |
mx.test_utils.download('https://s3.amazonaws.com/onnx-model-zoo/synset.txt') | |
with open('synset.txt', 'r') as f: | |
labels = [l.rstrip() for l in f] | |
os.system("wget https://github.com/AK391/models/raw/main/vision/classification/shufflenet/model/shufflenet-v2-10.onnx") | |
ort_session = ort.InferenceSession("shufflenet-v2-10.onnx") | |
def predict(path): | |
input_image = Image.open(path) | |
preprocess = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
input_tensor = preprocess(input_image) | |
input_batch = input_tensor.unsqueeze(0) | |
outputs = ort_session.run( | |
None, | |
{"input": input_batch.astype(np.float32)}, | |
) | |
a = np.argsort(outputs[0].flatten()) | |
results = {} | |
for i in a[0:5]: | |
results[labels[i]]=float(outputs[0][0][i]) | |
return results | |
title="GoogleNet" | |
description="GoogLeNet is the name of a convolutional neural network for classification, which competed in the ImageNet Large Scale Visual Recognition Challenge in 2014." | |
examples=[['catonnx.jpg']] | |
gr.Interface(predict,gr.inputs.Image(type='filepath'),"label",title=title,description=description,examples=examples).launch(enable_queue=True,debug=True) |