File size: 9,111 Bytes
f64d424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce17064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d02524
ce17064
 
 
 
 
 
6d02524
ce17064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a92960
 
 
 
b5cddd1
6d02524
4d9396f
 
 
 
6d02524
 
 
 
 
 
 
 
 
 
6046236
6d02524
f64d424
7fb0758
6d02524
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import streamlit as st
import pandas as pd
import numpy as np
import fitz  # PyMuPDF
import re
import json

def extract_pdf_text(pdf_path):
    """Extract text from a PDF file."""
    with fitz.open(pdf_path) as pdf_document:
        content_text = ""
        for page_num in range(len(pdf_document)):
            page = pdf_document.load_page(page_num)
            content_text += page.get_text() + "\n"
    return content_text

# Streamlit Application
st.title("PDF Data Extractor")

uploaded_file = st.file_uploader("Upload a PDF File", type="pdf")

if uploaded_file is not None:
    with open("temp.pdf", "wb") as f:
        f.write(uploaded_file.getbuffer())

    pdf_text = extract_pdf_text("temp.pdf")

    # Step 2: Extract relevant information from the text using regex
    pattern = r"2\s*3\s*4\s*5\s*\n-1,5\s*0([\s\S]*?)\n\nTrainer & Berater-Feedback"
    matches = re.findall(pattern, pdf_text)

    json_chunks = []
    for match in matches:
        match = match.replace(",", ".")
        values = [value.strip() for value in match.split("\n") if value.strip()]
        if len(values) == 22:
            json_chunks.append({"current": values})
        else:
            current = values[1::2]
            json_chunks.append({"current": current})

    json_output = json.dumps(json_chunks, indent=2)
    json_data = json.loads(json_output)

    # Define the original data structure
    original_data = {
        'Title': [
            "Personal Competence", "Personal Competence", "Personal Competence", "Personal Competence", "Personal Competence", "Personal Competence",
            "Personal Competence", "Personal Competence", "Personal Competence", "Personal Competence", "Personal Competence",
            "Personal Competence", "Personal Competence", "Business Competence", "Business Competence", "Business Competence", "Business Competence",
            "Business Competence", "Management Competence", "Management Competence", "Management Competence", "Management Competence",
        ],
        'Code': ["P1", "P2", "P3", "P4", "P5", "P6", "P7", "P8", "P9", "P10", "P11", "P12",
                 "P13", "B1", "B2", "B3", "B4", "B5", "M1", "M2", "M3", "M4"],
        'Dimensions': [
            "Integrity/ Reliability", "Appearance", "Enthusiasm/Passion", "Learning Motivation/ Self-Development", "Ability to Adapt/Flexibility",
            "Communication/Information", "Cooperation/ Team spirit", "Handling of Complex Situations", "Coolness/Handling of Unclear Situations",
            "Self-reliance/Initiative", "Conflict Management", "Ability to Assert Oneself/ Negotiation Skills", "Tact and Sensitivity",
            "Quality Orientation", "Client Orientation", "Specialized Knowledge", "Methodology/ Didactics/ Language", "Creativity/ Conceptional Skills",
            "Project Management", "Result Orientation", "Leadership Skills", "Coach and Advisor"
        ]
    }

    df = pd.DataFrame(original_data)

    # Add extracted scores to the DataFrame
    score_columns = ['Boss_score', 'Colleague_score', 'Colleague_other_score', 'Report_score', 'Customer_score']
    for idx, col in enumerate(score_columns):
        df[col] = json_data[idx]['current'] + [None] * (len(df) - len(json_data[idx]['current']))

    score_pattern = r"\d{1,2},\d{2}"
    code_pattern = r"[A-Z]\.[0-9]{1,2}"

    all_scores = re.findall(score_pattern, pdf_text)
    all_codes = re.findall(code_pattern, pdf_text)

    scores = [float(score.replace(",", ".")) for score in all_scores]
    codes = [code.strip() for code in all_codes]

    if len(codes) >= 44:
        codes = codes[22:44]
    if len(scores) >= 22:
        scores = scores[0:22]

    df1 = pd.DataFrame({'Code': [code.replace('.', '') for code in codes], 'All_raters_Score': scores})
    df_combined = pd.merge(df, df1, on="Code", how="inner")

    feature_cols = ['Boss_score', 'Colleague_score', 'Report_score', 'Customer_score', 'Colleague_other_score']
    df_combined[feature_cols] = df_combined[feature_cols].astype(float)

    def calculate_self_score(row):
        valid_features = [val for val in row[feature_cols] if pd.notna(val)]
        num_features = len(valid_features)
        if num_features > 1:
            sum_features = sum(valid_features) - row['All_raters_Score']
            return (row['All_raters_Score'] * num_features) - sum_features
        return np.nan

    df_combined['Self_score'] = df_combined.apply(calculate_self_score, axis=1)

     #Step 7 : Picking strengths and weaknesses
    # List of keywords/phrases to capture
    keywords = [
        'Integrity/ Reliability', 'Appearance', 'Enthusiasm/Passion',
        'Learning Motivation/ Self-Development', 'Ability to Adapt/Flexibility',
        'Communication/Information', 'Cooperation/ Team spirit',
        'Handling of Complex Situations', 'Coolness/Handling of Unclear Situations', 'Self-reliance/Initiative',
        'Conflict Management', 'Ability to Assert Oneself/ Negotiation Skills',
        'Tact and Sensitivity', 'Quality Orientation', 'Client Orientation',
        'Specialized Knowledge', 'Methodology/ Didactics/ Language',
        'Creativity/ Conceptional Skills', 'Project Management',
        'Result Orientation', 'Leadership Skills', 'Coach and Advisor'
    ]
    
    # Extract phrases between "Topics I would like to discuss... " and "Schedule for the follow-up meeting"
    phrases_pattern = r"Please use the form at the end of the section to finalize your development planning\.\s*(.*?)\s*Schedule for the follow-up meeting"
    phrases_matches = re.findall(phrases_pattern, pdf_text, re.DOTALL)
    
    # Extract the word after "The biggest strengths and room for improvements perceived by:"
    label_pattern = r"The biggest strengths and room for improvements perceived by:\s*(\w+)"
    labels = re.findall(label_pattern, pdf_text)
    
    # Process each match and extract only the required keywords
    json_output = []
    for i, phrases_text in enumerate(phrases_matches):
        extracted_phrases = [
            phrase for phrase in keywords if phrase in phrases_text
        ]
        if extracted_phrases:
            label = labels[i] if i < len(labels) else f"Phrases_{i+1}"
            json_output.append({label: extracted_phrases})
    
    # Convert to JSON format
    json_output_str = json.dumps(json_output, indent=2)
    
    # Print the JSON result
    #print(json_output_str)
    
    json_data = df.to_json(orient='records')
    
    data = []
    for item in json_output:
        for label, phrases in item.items():
            for phrase in phrases:
                data.append({'Rater': label, 'Dimensions': phrase})
    
    df4 = pd.DataFrame(data)

    #Step 9: Converting Streangths and Weaknesses with scores into json

    # Filter dataframes based on 'Label' value
    boss, direct, colleague, other_colleague = [df4[df4['Rater'] == label].copy() for label in ['Boss', 'Direct', 'Colleagues', 'Colleague (o']]
    
    # Create mapping dictionaries from df3
    mappings = {
        'Boss_score': df_combined.set_index('Dimensions')['Boss_score'].to_dict(),
        'Report_score': df_combined.set_index('Dimensions')['Report_score'].to_dict(),
        'Colleague_score': df_combined.set_index('Dimensions')['Colleague_score'].to_dict(),
        'Other_colleague_score': df_combined.set_index('Dimensions')['Colleague_other_score'].to_dict()
    }
    
    # Map the values from df3 to the appropriate DataFrames
    boss['Boss_score'] = boss['Dimensions'].map(mappings['Boss_score'])
    direct['Report_score'] = direct['Dimensions'].map(mappings['Report_score'])
    colleague['Colleague_score'] = colleague['Dimensions'].map(mappings['Colleague_score'])
    other_colleague['Other_colleague_score'] = other_colleague['Dimensions'].map(mappings['Other_colleague_score'])

    boss = boss.sort_values(by = 'Boss_score', ascending = False).reset_index(drop = True)
    direct = direct.sort_values(by = 'Report_score', ascending = False).reset_index(drop = True)
    colleague = colleague.sort_values(by = 'Colleague_score', ascending = False).reset_index(drop = True)
    other_colleague = other_colleague.sort_values(by = 'Other_colleague_score', ascending = False).reset_index(drop = True)

    def assign_strength_weakness(df):
        df['Strength/Weakness'] = np.nan
        df.loc[df.index.isin([0, 1, 2]) & df['Score'].notna(), 'Strength/Weakness'] = 'S'
        df.loc[df.index.isin([3, 4, 5]) & df['Score'].notna(), 'Strength/Weakness'] = 'W'
        return df

    # Apply the function to each DataFrame
    boss = assign_strength_weakness(boss)
    direct = assign_strength_weakness(direct)
    colleague = assign_strength_weakness(colleague)
    other_colleague = assign_strength_weakness(other_colleague)

    df5 = pd.concat([boss, direct, colleague, other_colleague], axis = 0)
    df5 = df5.dropna()
  
    st.write("## Output:")
    st.write("### 1. Extracted dataset: Dimensions, Compentency Cluster, Raters and Scores by Raters")
    st.dataframe(df_combined)
    
    st.write("### 2. Extracted list of Strengths and Weaknesses rated by each Rater")
    st.write(df5)