File size: 6,954 Bytes
7d6d701
04a1583
7d6d701
0a1cd5f
f4087b0
55274da
f4087b0
 
 
55274da
f4087b0
 
 
 
1ad0dcf
7d6d701
 
 
6a95bbc
7d6d701
a4da0c1
0421e9d
6f02f68
a4da0c1
 
e38fd6d
a4da0c1
 
 
 
b610816
cd9c510
 
6553dbd
55274da
6772176
2db1016
 
 
994b8cd
b12409c
9960268
dc12c17
ebcdcac
044c0a3
 
 
ebcdcac
044c0a3
1283168
 
 
 
 
7696266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283168
 
 
 
c2e6078
f6df106
7d6d701
eb004af
 
d958889
6772176
471b121
b3af0cf
3c3eb7e
 
edc93aa
deacf13
bb3c29a
6a74b8f
6772176
ef1f591
c2ac894
7d6d701
 
 
1cb182c
 
3c3eb7e
b7d5b27
908ded3
7d6d701
a4da0c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import gradio as gr
import openai, os

from langchain.chains import LLMChain, RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader, WebBaseLoader
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import OpenAIWhisperParser

from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma

from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())

#openai.api_key = os.environ["OPENAI_API_KEY"]

template = """If you don't know the answer, just say that you don't know, don't try to make up an answer. Keep the answer as concise as possible. Always say 
              "🧠 Thanks for using the app - Bernd Straehle." at the end of the answer. """

llm_template = "Answer the question at the end. " + template + "Question: {question} Helpful Answer: "
rag_template = "Use the following pieces of context to answer the question at the end. " + template + "{context} Question: {question} Helpful Answer: "

LLM_CHAIN_PROMPT = PromptTemplate(input_variables = ["question"], 
                                  template = llm_template)
RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], 
                                  template = rag_template)

CHROMA_DIR  = "/data/chroma"
YOUTUBE_DIR = "/data/youtube"

PDF_URL       = "https://arxiv.org/pdf/2303.08774.pdf"
WEB_URL       = "https://openai.com/research/gpt-4"
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE"
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE"
YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ"

MODEL_NAME  = "gpt-4"

def invoke(openai_api_key, use_rag, prompt):
    if (openai_api_key == ""):
        raise gr.Error("OpenAI API Key is required.")
    if (use_rag is None):
        raise gr.Error("Retrieval Augmented Generation is required.")
    if (prompt == ""):
        raise gr.Error("Prompt is required.")
    try:
        llm = ChatOpenAI(model_name = MODEL_NAME, 
                         openai_api_key = openai_api_key, 
                         temperature = 0)
        if (use_rag):
            # Document loading
            #docs = []
            # Load PDF
            #loader = PyPDFLoader(PDF_URL)
            #docs.extend(loader.load())
            # Load Web
            #loader = WebBaseLoader(WEB_URL_1)
            #docs.extend(loader.load())
            # Load YouTube
            #loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_1,
            #                                           YOUTUBE_URL_2,
            #                                           YOUTUBE_URL_3], YOUTUBE_DIR), 
            #                       OpenAIWhisperParser())
            #docs.extend(loader.load())
            # Document splitting
            #text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = 150,
            #                                               chunk_size = 1500)
            #splits = text_splitter.split_documents(docs)
            # Document storage
            #vector_db = Chroma.from_documents(documents = splits, 
            #                                  embedding = OpenAIEmbeddings(disallowed_special = ()), 
            #                                  persist_directory = CHROMA_DIR)
            # Document retrieval
            vector_db = Chroma(embedding_function = OpenAIEmbeddings(),
                               persist_directory = CHROMA_DIR)
            rag_chain = RetrievalQA.from_chain_type(llm, 
                                                    chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT}, 
                                                    retriever = vector_db.as_retriever(search_kwargs = {"k": 3}), 
                                                    return_source_documents = True)
            result = rag_chain({"query": prompt})
            result = result["result"]
        else:
            chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT)
            result = chain.run({"question": prompt})
    except Exception as e:
        raise gr.Error(e)
    return result

description = """<strong>Overview:</strong> Reasoning application that demonstrates a <strong>Large Language Model (LLM)</strong> with 
                 <strong>Retrieval Augmented Generation (RAG)</strong> on <strong>external data</strong>.\n\n
                 <strong>Instructions:</strong> Enter an OpenAI API key and perform LLM use cases (semantic search, summarization, translation, etc.) on 
                 <a href='""" + YOUTUBE_URL_1 + """'>YouTube</a>, <a href='""" + PDF_URL + """'>PDF</a>, and <a href='""" + WEB_URL + """'>Web</a> 
                 <strong>GPT-4 data</strong> (created after LLM training cutoff).
                 <ul style="list-style-type:square;">
                 <li>Set "Retrieval Augmented Generation" to "<strong>False</strong>" and submit prompt "What is GPT-4?" The LLM <strong>without</strong> RAG does not know the answer.</li>
                 <li>Set "Retrieval Augmented Generation" to "<strong>True</strong>" and submit prompt "What is GPT-4?" The LLM <strong>with</strong> RAG knows the answer.</li>
                 <li>Experiment with prompts, e.g. "What are GPT-4's image capabilities in one word and sentence?", "List GPT-4's exam scores and benchmark results.", or "Compare GPT-4 to GPT-3.5 in markdown table format."</li>
                 <li>Experiment some more, for example "What is the GPT-4 API's cost and rate limit? Answer in English, Arabic, Chinese, Hindi, and Russian in JSON format." or "Write a Python program that calls the GPT-4 API."</li>
                 </ul>\n\n
                 <strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://openai.com/'>OpenAI</a> API via AI-first 
                 <a href='https://www.langchain.com/'>LangChain</a> toolkit with <a href='""" + WEB_URL + """'>GPT-4</a> foundation model and AI-native 
                 <a href='https://www.trychroma.com/'>Chroma</a> embedding database. Speech-to-text via <a href='https://openai.com/research/whisper'>Whisper</a> 
                 foundation model."""

gr.close_all()
demo = gr.Interface(fn=invoke, 
                    inputs = [gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1), 
                              gr.Radio([True, False], label="Retrieval Augmented Generation", value = False), 
                              gr.Textbox(label = "Prompt", value = "What is GPT-4?", lines = 1)],
                    outputs = [gr.Textbox(label = "Completion", lines = 1)],
                    title = "Generative AI - LLM & RAG",
                    description = description)
demo.launch()