Spaces:
Running
Running
File size: 6,581 Bytes
c02e3db 2f96bb8 71a8799 2f96bb8 9b5b26a 6cdbdc2 16edca8 6cdbdc2 f8b4531 b80cbf1 7233de1 74e8501 6cdbdc2 b80cbf1 74e8501 b80cbf1 2e6775a 6cdbdc2 f8b4531 6cdbdc2 85e3933 6cdbdc2 f0e61d0 6cdbdc2 c02e3db 6cdbdc2 f8b4531 6cdbdc2 f8b4531 6cdbdc2 0f668a0 6cdbdc2 85e3933 f0e61d0 6cdbdc2 85e3933 0f668a0 85e3933 34d5e78 cd677bd 2e6775a cd677bd 2e6775a c02e3db cd677bd 2e6775a 2f96bb8 2e6775a c02e3db 2e6775a cd677bd 71a8799 73e52d4 bb8d29a 73e52d4 c02e3db bb8d29a 73e52d4 23331b5 148309a 8cf77f5 c02e3db 148309a bb8d29a 148309a 8cf77f5 cd677bd 71a8799 af62f46 71a8799 c02e3db 71a8799 9b5b26a bb8d29a cd677bd 71a8799 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import feedparser
import urllib.parse
import yaml
import gradio as gr
from smolagents import CodeAgent, HfApiModel, tool
# @tool
# def fetch_latest_arxiv_papers(keywords: list, num_results: int = 3) -> list:
# """Fetches the latest research papers from arXiv based on provided keywords.
# Args:
# keywords: A list of keywords to search for relevant papers.
# num_results: The number of papers to fetch (default is 3).
# Returns:
# A list of dictionaries containing:
# - "title": The title of the research paper.
# - "authors": The authors of the paper.
# - "year": The publication year.
# - "abstract": A summary of the research paper.
# - "link": A direct link to the paper on arXiv.
# """
# try:
# print(f"DEBUG: Searching arXiv papers with keywords: {keywords}") # Debug input
# #Properly format query with +AND+ for multiple keywords
# query = "+AND+".join([f"all:{kw}" for kw in keywords])
# query_encoded = urllib.parse.quote(query) # Encode spaces and special characters
# url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results={num_results}&sortBy=submittedDate&sortOrder=descending"
# print(f"DEBUG: Query URL - {url}") # Debug URL
# feed = feedparser.parse(url)
# papers = []
# for entry in feed.entries:
# papers.append({
# "title": entry.title,
# "authors": ", ".join(author.name for author in entry.authors),
# "year": entry.published[:4], # Extract year
# "abstract": entry.summary,
# "link": entry.link
# })
# return papers
# except Exception as e:
# print(f"ERROR: {str(e)}") # Debug errors
# return [f"Error fetching research papers: {str(e)}"]
@tool
def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
"""Fetches the latest research papers from arXiv based on provided keywords.
Args:
keywords: A list of keywords to search for relevant papers.
num_results: The number of papers to fetch (default is 5).
Returns:
A list of dictionaries containing:
- "title": The title of the research paper.
- "authors": The authors of the paper.
- "year": The publication year.
- "abstract": A summary of the research paper.
- "link": A direct link to the paper on arXiv.
"""
try:
print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")
# Format query using "AND" to enforce strict keyword presence
query = "+AND+".join([f"ti:{kw}+OR+abs:{kw}" for kw in keywords])
query_encoded = urllib.parse.quote(query) # Encode spaces and special characters
url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results=20&sortBy=submittedDate&sortOrder=descending"
print(f"DEBUG: Query URL - {url}")
feed = feedparser.parse(url)
papers = []
for entry in feed.entries:
title = entry.title.lower()
abstract = entry.summary.lower()
# ✅ Ensure at least one keyword appears in the title or abstract
if any(kw.lower() in title or kw.lower() in abstract for kw in keywords):
papers.append({
"title": entry.title,
"authors": ", ".join(author.name for author in entry.authors),
"year": entry.published[:4], # Extract year
"abstract": entry.summary,
"link": entry.link
})
# ✅ Sort papers: First prioritize keyword in title, then abstract
papers.sort(key=lambda x: sum(kw.lower() in x["title"].lower() for kw in keywords), reverse=True)
return papers[:num_results] # Return top-matching papers
except Exception as e:
print(f"ERROR: {str(e)}")
return [{"error": f"Error fetching research papers: {str(e)}"}]
# AI Model
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
custom_role_conversions=None,
)
# Load prompt templates
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
# Create the AI Agent
agent = CodeAgent(
model=model,
tools=[fetch_latest_arxiv_papers], # Properly registered tool
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name="ScholarAgent",
description="An AI agent that fetches the latest research papers from arXiv based on user-defined keywords and filters.",
prompt_templates=prompt_templates
)
# Define Gradio Search Function
def search_papers(user_input):
keywords = [kw.strip() for kw in user_input.split(",") if kw.strip()] # Ensure valid keywords
print(f"DEBUG: Received input keywords - {keywords}") # Debug user input
if not keywords:
print("DEBUG: No valid keywords provided.")
return "Error: Please enter at least one valid keyword."
results = fetch_latest_arxiv_papers(keywords, num_results=3) # Fetch 3 results
print(f"DEBUG: Results received - {results}") # Debug function output
if isinstance(results, list) and results and isinstance(results[0], dict):
#Format output with better readability and clarity
formatted_results = "\n\n".join([
f"---\n\n"
f"📌 **Title:**\n{paper['title']}\n\n"
f"👨🔬 **Authors:**\n{paper['authors']}\n\n"
f"📅 **Year:** {paper['year']}\n\n"
f"📖 **Abstract:**\n{paper['abstract'][:500]}... *(truncated for readability)*\n\n"
f"[🔗 Read Full Paper]({paper['link']})\n\n"
for paper in results
])
return formatted_results
print("DEBUG: No results found.")
return "No results found. Try different keywords."
# Create Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# ScholarAgent")
keyword_input = gr.Textbox(label="Enter keywords (comma-separated)", placeholder="e.g., deep learning, reinforcement learning")
output_display = gr.Markdown()
search_button = gr.Button("Search")
search_button.click(search_papers, inputs=[keyword_input], outputs=[output_display])
print("DEBUG: Gradio UI is running. Waiting for user input...")
# Launch Gradio App
demo.launch()
|