Spaces:
Running
Running
File size: 11,087 Bytes
c02e3db 2f96bb8 71a8799 2f96bb8 9b5b26a 6cdbdc2 ebd9098 8267210 422754d 8267210 28fc30b 8267210 422754d 28fc30b 8267210 ebd9098 8267210 28fc30b 8267210 28fc30b 8267210 6cdbdc2 8267210 b80cbf1 7233de1 ebd9098 b80cbf1 8267210 b80cbf1 2e6775a 6cdbdc2 8267210 e727728 ebd9098 6cdbdc2 85e3933 6cdbdc2 f0e61d0 6cdbdc2 ebd9098 c02e3db ebd9098 6cdbdc2 ebd9098 6cdbdc2 8267210 0f668a0 8267210 ebd9098 8267210 ebd9098 8267210 ebd9098 85e3933 f0e61d0 6cdbdc2 85e3933 0f668a0 cd677bd 2e6775a cd677bd 2e6775a c02e3db cd677bd 2e6775a 1b763fc 2e6775a c02e3db 2e6775a e727728 71a8799 73e52d4 bb8d29a 73e52d4 c02e3db bb8d29a e727728 8267210 e727728 8267210 73e52d4 148309a 8cf77f5 e727728 8cf77f5 e727728 8cf77f5 c02e3db 148309a e727728 bb8d29a 148309a cd677bd 71a8799 af62f46 71a8799 c02e3db 71a8799 9b5b26a bb8d29a cd677bd 71a8799 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import feedparser
import urllib.parse
import yaml
import gradio as gr
from smolagents import CodeAgent, HfApiModel, tool
# @tool
# def fetch_latest_arxiv_papers(keywords: list, num_results: int = 3) -> list:
# """Fetches the latest research papers from arXiv based on provided keywords.
# Args:
# keywords: A list of keywords to search for relevant papers.
# num_results: The number of papers to fetch (default is 3).
# Returns:
# A list of dictionaries containing:
# - "title": The title of the research paper.
# - "authors": The authors of the paper.
# - "year": The publication year.
# - "abstract": A summary of the research paper.
# - "link": A direct link to the paper on arXiv.
# """
# try:
# print(f"DEBUG: Searching arXiv papers with keywords: {keywords}") # Debug input
# #Properly format query with +AND+ for multiple keywords
# query = "+AND+".join([f"all:{kw}" for kw in keywords])
# query_encoded = urllib.parse.quote(query) # Encode spaces and special characters
# url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results={num_results}&sortBy=submittedDate&sortOrder=descending"
# print(f"DEBUG: Query URL - {url}") # Debug URL
# feed = feedparser.parse(url)
# papers = []
# for entry in feed.entries:
# papers.append({
# "title": entry.title,
# "authors": ", ".join(author.name for author in entry.authors),
# "year": entry.published[:4], # Extract year
# "abstract": entry.summary,
# "link": entry.link
# })
# return papers
# except Exception as e:
# print(f"ERROR: {str(e)}") # Debug errors
# return [f"Error fetching research papers: {str(e)}"]
#"""------Applied BM25 search for paper retrival------"""
# from rank_bm25 import BM25Okapi
# import nltk
# import os
# import shutil
# nltk_data_path = os.path.join(nltk.data.path[0], "tokenizers", "punkt")
# if os.path.exists(nltk_data_path):
# shutil.rmtree(nltk_data_path) # Remove corrupted version
# print("Removed old NLTK 'punkt' data. Reinstalling...")
# # Step 2: Download the correct 'punkt' tokenizer
# nltk.download("punkt_tab")
# print("Successfully installed 'punkt'!")
# @tool # Register the function properly as a SmolAgents tool
# def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
# """Fetches and ranks arXiv papers using BM25 keyword relevance.
# Args:
# keywords: List of keywords for search.
# num_results: Number of results to return.
# Returns:
# List of the most relevant papers based on BM25 ranking.
# """
# try:
# print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")
# # Use a general keyword search (without `ti:` and `abs:`)
# query = "+AND+".join([f"all:{kw}" for kw in keywords])
# query_encoded = urllib.parse.quote(query)
# url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results=50&sortBy=submittedDate&sortOrder=descending"
# print(f"DEBUG: Query URL - {url}")
# feed = feedparser.parse(url)
# papers = []
# # Extract papers from arXiv
# for entry in feed.entries:
# papers.append({
# "title": entry.title,
# "authors": ", ".join(author.name for author in entry.authors),
# "year": entry.published[:4],
# "abstract": entry.summary,
# "link": entry.link
# })
# if not papers:
# return [{"error": "No results found. Try different keywords."}]
# # Apply BM25 ranking
# tokenized_corpus = [nltk.word_tokenize(paper["title"].lower() + " " + paper["abstract"].lower()) for paper in papers]
# bm25 = BM25Okapi(tokenized_corpus)
# tokenized_query = nltk.word_tokenize(" ".join(keywords).lower())
# scores = bm25.get_scores(tokenized_query)
# # Sort papers based on BM25 score
# ranked_papers = sorted(zip(papers, scores), key=lambda x: x[1], reverse=True)
# # Return the most relevant ones
# return [paper[0] for paper in ranked_papers[:num_results]]
# except Exception as e:
# print(f"ERROR: {str(e)}")
# return [{"error": f"Error fetching research papers: {str(e)}"}]
"""------Applied TF-IDF for better semantic search------"""
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import gradio as gr
from smolagents import CodeAgent, HfApiModel, tool
import nltk
nltk.download("stopwords")
from nltk.corpus import stopwords
@tool # ✅ Register the function properly as a SmolAgents tool
def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
"""Fetches and ranks arXiv papers using TF-IDF and Cosine Similarity.
Args:
keywords: List of keywords for search.
num_results: Number of results to return.
Returns:
List of the most relevant papers based on TF-IDF ranking.
"""
try:
print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")
# Use a general keyword search
query = "+AND+".join([f"all:{kw}" for kw in keywords])
query_encoded = urllib.parse.quote(query)
url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results=50&sortBy=submittedDate&sortOrder=descending"
print(f"DEBUG: Query URL - {url}")
feed = feedparser.parse(url)
papers = []
# Extract papers from arXiv
for entry in feed.entries:
papers.append({
"title": entry.title,
"authors": ", ".join(author.name for author in entry.authors),
"year": entry.published[:4],
"abstract": entry.summary,
"link": entry.link
})
if not papers:
return [{"error": "No results found. Try different keywords."}]
# Prepare TF-IDF Vectorization
corpus = [paper["title"] + " " + paper["abstract"] for paper in papers]
vectorizer = TfidfVectorizer(stop_words=stopwords.words('english')) # Remove stopwords
tfidf_matrix = vectorizer.fit_transform(corpus)
# Transform Query into TF-IDF Vector
query_str = " ".join(keywords)
query_vec = vectorizer.transform([query_str])
#Compute Cosine Similarity
similarity_scores = cosine_similarity(query_vec, tfidf_matrix).flatten()
#Sort papers based on similarity score
ranked_papers = sorted(zip(papers, similarity_scores), key=lambda x: x[1], reverse=True)
# Return the most relevant papers
return [paper[0] for paper in ranked_papers[:num_results]]
except Exception as e:
print(f"ERROR: {str(e)}")
return [{"error": f"Error fetching research papers: {str(e)}"}]
# AI Model
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
custom_role_conversions=None,
)
# Load prompt templates
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
# Create the AI Agent
agent = CodeAgent(
model=model,
tools=[final_answer,fetch_latest_arxiv_papers], # Add your tools here
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name="ScholarAgent",
description="An AI agent that fetches the latest research papers from arXiv based on user-defined keywords and filters.",
prompt_templates=prompt_templates
)
# # Define Gradio Search Function
# def search_papers(user_input):
# keywords = [kw.strip() for kw in user_input.split(",") if kw.strip()] # Ensure valid keywords
# print(f"DEBUG: Received input keywords - {keywords}") # Debug user input
# if not keywords:
# print("DEBUG: No valid keywords provided.")
# return "Error: Please enter at least one valid keyword."
# results = fetch_latest_arxiv_papers(keywords, num_results=3) # Fetch 3 results
# print(f"DEBUG: Results received - {results}") # Debug function output
# if isinstance(results, list) and results and isinstance(results[0], dict):
# #Format output with better readability and clarity
# formatted_results = "\n\n".join([
# f"---\n\n"
# f"📌 **Title:**\n{paper['title']}\n\n"
# f"👨🔬 **Authors:**\n{paper['authors']}\n\n"
# f"📅 **Year:** {paper['year']}\n\n"
# f"📖 **Abstract:**\n{paper['abstract'][:500]}... *(truncated for readability)*\n\n"
# f"[🔗 Read Full Paper]({paper['link']})\n\n"
# for paper in results
# ])
# return formatted_results
# print("DEBUG: No results found.")
# return "No results found. Try different keywords."
#Search Papers
def search_papers(user_input):
keywords = [kw.strip() for kw in user_input.split(",") if kw.strip()] # Ensure valid keywords
print(f"DEBUG: Received input keywords - {keywords}") # Debug user input
if not keywords:
print("DEBUG: No valid keywords provided.")
return "Error: Please enter at least one valid keyword."
results = fetch_latest_arxiv_papers(keywords, num_results=3) # Fetch 3 results
print(f"DEBUG: Results received - {results}") # Debug function output
# Check if the API returned an error
if isinstance(results, list) and len(results) > 0 and "error" in results[0]:
return results[0]["error"] # Return the error message directly
# Format results only if valid papers exist
if isinstance(results, list) and results and isinstance(results[0], dict):
formatted_results = "\n\n".join([
f"---\n\n"
f"📌 **Title:** {paper['title']}\n\n"
f"👨🔬 **Authors:** {paper['authors']}\n\n"
f"📅 **Year:** {paper['year']}\n\n"
f"📖 **Abstract:** {paper['abstract'][:500]}... *(truncated for readability)*\n\n"
f"[🔗 Read Full Paper]({paper['link']})\n\n"
for paper in results
])
return formatted_results
print("DEBUG: No results found.")
return "No results found. Try different keywords."
# Create Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# ScholarAgent")
keyword_input = gr.Textbox(label="Enter keywords (comma-separated)", placeholder="e.g., deep learning, reinforcement learning")
output_display = gr.Markdown()
search_button = gr.Button("Search")
search_button.click(search_papers, inputs=[keyword_input], outputs=[output_display])
print("DEBUG: Gradio UI is running. Waiting for user input...")
# Launch Gradio App
demo.launch()
|