File size: 8,320 Bytes
c02e3db
2f96bb8
 
71a8799
2f96bb8
9b5b26a
6cdbdc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebd9098
 
 
422754d
 
 
28fc30b
422754d
 
 
 
28fc30b
 
 
422754d
ebd9098
28fc30b
 
 
e727728
6cdbdc2
ebd9098
b80cbf1
7233de1
ebd9098
 
b80cbf1
 
ebd9098
b80cbf1
2e6775a
6cdbdc2
 
e727728
 
ebd9098
 
6cdbdc2
 
85e3933
6cdbdc2
f0e61d0
6cdbdc2
ebd9098
c02e3db
ebd9098
 
 
 
 
 
 
6cdbdc2
ebd9098
 
6cdbdc2
ebd9098
 
 
0f668a0
ebd9098
 
 
 
 
 
 
 
85e3933
f0e61d0
6cdbdc2
 
85e3933
0f668a0
cd677bd
2e6775a
 
 
 
 
 
 
cd677bd
2e6775a
 
c02e3db
cd677bd
2e6775a
 
2f96bb8
2e6775a
 
 
 
 
c02e3db
2e6775a
 
 
e727728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71a8799
73e52d4
bb8d29a
 
73e52d4
 
 
 
c02e3db
bb8d29a
e727728
 
 
 
 
 
73e52d4
148309a
8cf77f5
e727728
 
8cf77f5
e727728
8cf77f5
c02e3db
 
148309a
e727728
bb8d29a
 
 
148309a
cd677bd
71a8799
af62f46
71a8799
 
 
c02e3db
71a8799
9b5b26a
bb8d29a
 
cd677bd
71a8799
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import feedparser
import urllib.parse
import yaml
import gradio as gr
from smolagents import CodeAgent, HfApiModel, tool

# @tool
# def fetch_latest_arxiv_papers(keywords: list, num_results: int = 3) -> list:
#     """Fetches the latest research papers from arXiv based on provided keywords.

#     Args:
#         keywords: A list of keywords to search for relevant papers.
#         num_results: The number of papers to fetch (default is 3).

#     Returns:
#         A list of dictionaries containing:
#             - "title": The title of the research paper.
#             - "authors": The authors of the paper.
#             - "year": The publication year.
#             - "abstract": A summary of the research paper.
#             - "link": A direct link to the paper on arXiv.
#     """
#     try:
#         print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")  # Debug input
        
#         #Properly format query with +AND+ for multiple keywords
#         query = "+AND+".join([f"all:{kw}" for kw in keywords])  
#         query_encoded = urllib.parse.quote(query)  # Encode spaces and special characters
        
#         url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results={num_results}&sortBy=submittedDate&sortOrder=descending"
        
#         print(f"DEBUG: Query URL - {url}")  # Debug URL
        
#         feed = feedparser.parse(url)

#         papers = []
#         for entry in feed.entries:
#             papers.append({
#                 "title": entry.title,
#                 "authors": ", ".join(author.name for author in entry.authors),
#                 "year": entry.published[:4],  # Extract year
#                 "abstract": entry.summary,
#                 "link": entry.link
#             })

#         return papers

#     except Exception as e:
#         print(f"ERROR: {str(e)}")  # Debug errors
#         return [f"Error fetching research papers: {str(e)}"]

from rank_bm25 import BM25Okapi
import nltk

import os
import shutil


nltk_data_path = os.path.join(nltk.data.path[0], "tokenizers", "punkt")
if os.path.exists(nltk_data_path):
    shutil.rmtree(nltk_data_path)  # Remove corrupted version

print("✅ Removed old NLTK 'punkt' data. Reinstalling...")

# ✅ Step 2: Download the correct 'punkt' tokenizer
nltk.download("punkt")

print("✅ Successfully installed 'punkt'!")


@tool  # Register the function properly as a SmolAgents tool
def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
    """Fetches and ranks arXiv papers using BM25 keyword relevance.

    Args:
        keywords: List of keywords for search.
        num_results: Number of results to return.

    Returns:
        List of the most relevant papers based on BM25 ranking.
    """
    try:
        print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")

        # Use a general keyword search (without `ti:` and `abs:`)
        query = "+AND+".join([f"all:{kw}" for kw in keywords])  
        query_encoded = urllib.parse.quote(query)
        url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results=50&sortBy=submittedDate&sortOrder=descending"

        print(f"DEBUG: Query URL - {url}")

        feed = feedparser.parse(url)
        papers = []

        # Extract papers from arXiv
        for entry in feed.entries:
            papers.append({
                "title": entry.title,
                "authors": ", ".join(author.name for author in entry.authors),
                "year": entry.published[:4],
                "abstract": entry.summary,
                "link": entry.link
            })

        if not papers:
            return [{"error": "No results found. Try different keywords."}]

        # Apply BM25 ranking
        tokenized_corpus = [nltk.word_tokenize(paper["title"].lower() + " " + paper["abstract"].lower()) for paper in papers]
        bm25 = BM25Okapi(tokenized_corpus)

        tokenized_query = nltk.word_tokenize(" ".join(keywords).lower())
        scores = bm25.get_scores(tokenized_query)

        # Sort papers based on BM25 score
        ranked_papers = sorted(zip(papers, scores), key=lambda x: x[1], reverse=True)

        # Return the most relevant ones
        return [paper[0] for paper in ranked_papers[:num_results]]

    except Exception as e:
        print(f"ERROR: {str(e)}")
        return [{"error": f"Error fetching research papers: {str(e)}"}]


# AI Model
model = HfApiModel(
    max_tokens=2096,
    temperature=0.5,
    model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
    custom_role_conversions=None,
)

# Load prompt templates
with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)

# Create the AI Agent
agent = CodeAgent(
    model=model,
    tools=[fetch_latest_arxiv_papers],  # Properly registered tool
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name="ScholarAgent",
    description="An AI agent that fetches the latest research papers from arXiv based on user-defined keywords and filters.",
    prompt_templates=prompt_templates
)

# # Define Gradio Search Function
# def search_papers(user_input):
#     keywords = [kw.strip() for kw in user_input.split(",") if kw.strip()]  # Ensure valid keywords
#     print(f"DEBUG: Received input keywords - {keywords}")  # Debug user input
    
#     if not keywords:
#         print("DEBUG: No valid keywords provided.")
#         return "Error: Please enter at least one valid keyword."
    
#     results = fetch_latest_arxiv_papers(keywords, num_results=3)  # Fetch 3 results
#     print(f"DEBUG: Results received - {results}")  # Debug function output
    
#     if isinstance(results, list) and results and isinstance(results[0], dict):
#         #Format output with better readability and clarity
#         formatted_results = "\n\n".join([
#             f"---\n\n"
#             f"📌 **Title:**\n{paper['title']}\n\n"
#             f"👨‍🔬 **Authors:**\n{paper['authors']}\n\n"
#             f"📅 **Year:** {paper['year']}\n\n"
#             f"📖 **Abstract:**\n{paper['abstract'][:500]}... *(truncated for readability)*\n\n"
#             f"[🔗 Read Full Paper]({paper['link']})\n\n"
#             for paper in results
#         ])
#         return formatted_results
    
#     print("DEBUG: No results found.")
#     return "No results found. Try different keywords."

#Search Papers
def search_papers(user_input):
    keywords = [kw.strip() for kw in user_input.split(",") if kw.strip()]  # Ensure valid keywords
    print(f"DEBUG: Received input keywords - {keywords}")  # Debug user input
    
    if not keywords:
        print("DEBUG: No valid keywords provided.")
        return "Error: Please enter at least one valid keyword."
    
    results = fetch_latest_arxiv_papers(keywords, num_results=3)  # Fetch 3 results
    print(f"DEBUG: Results received - {results}")  # Debug function output

    # ✅ Check if the API returned an error
    if isinstance(results, list) and len(results) > 0 and "error" in results[0]:
        return results[0]["error"]  # Return the error message directly

    # ✅ Format results only if valid papers exist
    if isinstance(results, list) and results and isinstance(results[0], dict):
        formatted_results = "\n\n".join([
            f"---\n\n"
            f"📌 **Title:** {paper['title']}\n\n"
            f"👨‍🔬 **Authors:** {paper['authors']}\n\n"
            f"📅 **Year:** {paper['year']}\n\n"
            f"📖 **Abstract:** {paper['abstract'][:500]}... *(truncated for readability)*\n\n"
            f"[🔗 Read Full Paper]({paper['link']})\n\n"
            for paper in results
        ])
        return formatted_results

    print("DEBUG: No results found.")
    return "No results found. Try different keywords."


# Create Gradio UI
with gr.Blocks() as demo:
    gr.Markdown("# ScholarAgent")
    keyword_input = gr.Textbox(label="Enter keywords (comma-separated)", placeholder="e.g., deep learning, reinforcement learning")
    output_display = gr.Markdown()
    search_button = gr.Button("Search")

    search_button.click(search_papers, inputs=[keyword_input], outputs=[output_display])

    print("DEBUG: Gradio UI is running. Waiting for user input...")

# Launch Gradio App
demo.launch()