File size: 4,027 Bytes
c02e3db
2f96bb8
 
71a8799
2f96bb8
9b5b26a
2f96bb8
74e8501
 
b80cbf1
7233de1
74e8501
 
b80cbf1
 
74e8501
 
 
 
 
 
b80cbf1
2e6775a
c02e3db
34d5e78
cd677bd
34d5e78
 
 
 
 
 
 
c02e3db
0f668a0
c02e3db
 
 
 
 
 
 
 
 
0f668a0
c02e3db
0f668a0
34d5e78
 
74e8501
34d5e78
cd677bd
2e6775a
 
 
 
 
 
 
cd677bd
2e6775a
 
c02e3db
cd677bd
2e6775a
 
2f96bb8
2e6775a
 
 
 
 
c02e3db
2e6775a
 
 
cd677bd
71a8799
73e52d4
bb8d29a
 
73e52d4
 
 
 
c02e3db
bb8d29a
 
73e52d4
c02e3db
 
 
 
bb8d29a
 
 
 
cd677bd
71a8799
c02e3db
71a8799
 
 
c02e3db
71a8799
9b5b26a
bb8d29a
 
cd677bd
71a8799
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import feedparser
import urllib.parse
import yaml
import gradio as gr
from smolagents import CodeAgent, HfApiModel, tool

@tool
def fetch_latest_arxiv_papers(keywords: list, num_results: int = 3) -> list:
    """Fetches the latest research papers from arXiv based on provided keywords.

    Args:
        keywords: A list of keywords to search for relevant papers.
        num_results: The number of papers to fetch (default is 3).

    Returns:
        A list of dictionaries containing:
            - "title": The title of the research paper.
            - "authors": The authors of the paper.
            - "year": The publication year.
            - "abstract": A summary of the research paper.
            - "link": A direct link to the paper on arXiv.
    """
    try:
        print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")  # Debug input
        
        #Properly format query with +AND+ for multiple keywords
        query = "+AND+".join([f"all:{kw}" for kw in keywords])  
        query_encoded = urllib.parse.quote(query)  # Encode spaces and special characters
        
        url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results={num_results}&sortBy=submittedDate&sortOrder=descending"
        
        print(f"DEBUG: Query URL - {url}")  # Debug URL
        
        feed = feedparser.parse(url)

        papers = []
        for entry in feed.entries:
            papers.append({
                "title": entry.title,
                "authors": ", ".join(author.name for author in entry.authors),
                "year": entry.published[:4],  # Extract year
                "abstract": entry.summary,
                "link": entry.link
            })

        return papers

    except Exception as e:
        print(f"ERROR: {str(e)}")  # Debug errors
        return [f"Error fetching research papers: {str(e)}"]

# AI Model
model = HfApiModel(
    max_tokens=2096,
    temperature=0.5,
    model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
    custom_role_conversions=None,
)

# Load prompt templates
with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)

# Create the AI Agent
agent = CodeAgent(
    model=model,
    tools=[fetch_latest_arxiv_papers],  # Properly registered tool
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name="ScholarAgent",
    description="An AI agent that fetches the latest research papers from arXiv based on user-defined keywords and filters.",
    prompt_templates=prompt_templates
)

# Define Gradio Search Function
def search_papers(user_input):
    keywords = [kw.strip() for kw in user_input.split(",") if kw.strip()]  # Ensure valid keywords
    print(f"DEBUG: Received input keywords - {keywords}")  # Debug user input
    
    if not keywords:
        print("DEBUG: No valid keywords provided.")
        return "Error: Please enter at least one valid keyword."
    
    results = fetch_latest_arxiv_papers(keywords, num_results=3)  # Fetch 3 results
    print(f"DEBUG: Results received - {results}")  # Debug function output
    
    if isinstance(results, list) and results and isinstance(results[0], dict):
        return "\n\n".join([
            f"**Title:** {paper['title']}\n**Authors:** {paper['authors']}\n**Year:** {paper['year']}\n**Abstract:** {paper['abstract']}\n[Read More]({paper['link']})"
            for paper in results
        ])
    
    print("DEBUG: No results found.")
    return "No results found. Try different keywords."

# Create Gradio UI
with gr.Blocks() as demo:
    gr.Markdown("# arXiv Research Paper Fetcher")
    keyword_input = gr.Textbox(label="Enter keywords (comma-separated)", placeholder="e.g., deep learning, reinforcement learning")
    output_display = gr.Markdown()
    search_button = gr.Button("Search")

    search_button.click(search_papers, inputs=[keyword_input], outputs=[output_display])

    print("DEBUG: Gradio UI is running. Waiting for user input...")

# Launch Gradio App
demo.launch()