Spaces:
Running
Running
File size: 4,027 Bytes
c02e3db 2f96bb8 71a8799 2f96bb8 9b5b26a 2f96bb8 74e8501 b80cbf1 7233de1 74e8501 b80cbf1 74e8501 b80cbf1 2e6775a c02e3db 34d5e78 cd677bd 34d5e78 c02e3db 0f668a0 c02e3db 0f668a0 c02e3db 0f668a0 34d5e78 74e8501 34d5e78 cd677bd 2e6775a cd677bd 2e6775a c02e3db cd677bd 2e6775a 2f96bb8 2e6775a c02e3db 2e6775a cd677bd 71a8799 73e52d4 bb8d29a 73e52d4 c02e3db bb8d29a 73e52d4 c02e3db bb8d29a cd677bd 71a8799 c02e3db 71a8799 c02e3db 71a8799 9b5b26a bb8d29a cd677bd 71a8799 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import feedparser
import urllib.parse
import yaml
import gradio as gr
from smolagents import CodeAgent, HfApiModel, tool
@tool
def fetch_latest_arxiv_papers(keywords: list, num_results: int = 3) -> list:
"""Fetches the latest research papers from arXiv based on provided keywords.
Args:
keywords: A list of keywords to search for relevant papers.
num_results: The number of papers to fetch (default is 3).
Returns:
A list of dictionaries containing:
- "title": The title of the research paper.
- "authors": The authors of the paper.
- "year": The publication year.
- "abstract": A summary of the research paper.
- "link": A direct link to the paper on arXiv.
"""
try:
print(f"DEBUG: Searching arXiv papers with keywords: {keywords}") # Debug input
#Properly format query with +AND+ for multiple keywords
query = "+AND+".join([f"all:{kw}" for kw in keywords])
query_encoded = urllib.parse.quote(query) # Encode spaces and special characters
url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results={num_results}&sortBy=submittedDate&sortOrder=descending"
print(f"DEBUG: Query URL - {url}") # Debug URL
feed = feedparser.parse(url)
papers = []
for entry in feed.entries:
papers.append({
"title": entry.title,
"authors": ", ".join(author.name for author in entry.authors),
"year": entry.published[:4], # Extract year
"abstract": entry.summary,
"link": entry.link
})
return papers
except Exception as e:
print(f"ERROR: {str(e)}") # Debug errors
return [f"Error fetching research papers: {str(e)}"]
# AI Model
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
custom_role_conversions=None,
)
# Load prompt templates
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
# Create the AI Agent
agent = CodeAgent(
model=model,
tools=[fetch_latest_arxiv_papers], # Properly registered tool
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name="ScholarAgent",
description="An AI agent that fetches the latest research papers from arXiv based on user-defined keywords and filters.",
prompt_templates=prompt_templates
)
# Define Gradio Search Function
def search_papers(user_input):
keywords = [kw.strip() for kw in user_input.split(",") if kw.strip()] # Ensure valid keywords
print(f"DEBUG: Received input keywords - {keywords}") # Debug user input
if not keywords:
print("DEBUG: No valid keywords provided.")
return "Error: Please enter at least one valid keyword."
results = fetch_latest_arxiv_papers(keywords, num_results=3) # Fetch 3 results
print(f"DEBUG: Results received - {results}") # Debug function output
if isinstance(results, list) and results and isinstance(results[0], dict):
return "\n\n".join([
f"**Title:** {paper['title']}\n**Authors:** {paper['authors']}\n**Year:** {paper['year']}\n**Abstract:** {paper['abstract']}\n[Read More]({paper['link']})"
for paper in results
])
print("DEBUG: No results found.")
return "No results found. Try different keywords."
# Create Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# arXiv Research Paper Fetcher")
keyword_input = gr.Textbox(label="Enter keywords (comma-separated)", placeholder="e.g., deep learning, reinforcement learning")
output_display = gr.Markdown()
search_button = gr.Button("Search")
search_button.click(search_papers, inputs=[keyword_input], outputs=[output_display])
print("DEBUG: Gradio UI is running. Waiting for user input...")
# Launch Gradio App
demo.launch()
|