Spaces:
Runtime error
Runtime error
File size: 9,588 Bytes
b3c5a1a 477daa4 11973fd 477daa4 11973fd 477daa4 11973fd 477daa4 11973fd 477daa4 7a5d971 477daa4 b3c5a1a 477daa4 b3c5a1a 477daa4 b3c5a1a 477daa4 abcb468 477daa4 b3c5a1a 477daa4 b3c5a1a 477daa4 60a2c81 4e75298 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
from base64 import b64encode
import numpy
import torch
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
# For video display:
from matplotlib import pyplot as plt
from pathlib import Path
from PIL import Image
from torch import autocast
from torchvision import transforms as tfms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, logging
import os
torch.manual_seed(1)
# Supress some unnecessary warnings when loading the CLIPTextModel
logging.set_verbosity_error()
# Set device
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"
import gc
gc.collect()
torch.cuda.empty_cache()
from diffusers import StableDiffusionPipeline
model_id = "segmind/tiny-sd"
pipe = StableDiffusionPipeline.from_pretrained(model_id).to("cpu")
text_encoder = pipe.text_encoder.to(torch_device)
text_encoder.eval()
unet = pipe.unet.to(torch_device)
unet.eval()
vae = pipe.vae.to(torch_device)
vae.eval()
tokenizer = CLIPTokenizer.from_pretrained('openai/clip-vit-large-patch14')
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
del pipe
gc.collect()
seed_values = [0, 0, 0, 0, 0]
def load_learned_embeds():
pathlist = Path('learned_embeds/').glob('*_learned_embeds.bin')
learned_embeds = []
for path in pathlist:
path_in_str = str(path)
# print(path_in_str)
learned_embeds.append(torch.load(path_in_str))
concept_embeds_list = []
for obj in learned_embeds:
for k, v in obj.items():
if v.shape[0] == 768:
print(k, v.shape)
concept_embeds_list.append(v)
return torch.stack(concept_embeds_list)
def pil_to_latent(input_im):
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
with torch.no_grad():
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device) * 2 - 1) # Note scaling
return 0.18215 * latent.latent_dist.sample()
def latents_to_pil(latents):
# bath of latents -> list of images
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
# Prep Scheduler
def set_timesteps(scheduler, num_inference_steps):
scheduler.set_timesteps(num_inference_steps)
scheduler.timesteps = scheduler.timesteps.to(
torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
def get_output_embeds(input_embeddings):
# CLIP's text model uses causal mask, so we prepare it here:
bsz, seq_len = input_embeddings.shape[:2]
causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len,
dtype=input_embeddings.dtype)
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
# so that it doesn't just return the pooled final predictions:
encoder_outputs = text_encoder.text_model.encoder(
inputs_embeds=input_embeddings,
attention_mask=None, # We aren't using an attention mask so that can be None
causal_attention_mask=causal_attention_mask.to(torch_device),
output_attentions=None,
output_hidden_states=True, # We want the output embs not the final output
return_dict=None,
)
# We're interested in the output hidden state only
output = encoder_outputs[0]
# There is a final layer norm we need to pass these through
output = text_encoder.text_model.final_layer_norm(output)
# And now they're ready!
return output
def blue_loss(images, contrast_perc=80):
# How far the pixels are from +80% contrast:
contrast = 255*contrast_perc // 100 # it ranges from -255 to +255
contrast_scale_factor = (259 * (contrast + 255)) / (255 * (259 - contrast))
cimgs = (contrast_scale_factor * (images - 0.5) + 0.5 )
cimgs = torch.where(cimgs > 1.0, 1.0, cimgs)
cimgs = torch.where(cimgs < 0.0, 0.0, cimgs)
error = torch.abs( images - cimgs ).mean()
#error = torch.abs(images[:] - 0.9).mean() # [:,2] -> all images in batch, only the blue channel
print('error: ', error)
return error
# Generating an image with these modified embeddings
def generate_with_embs(text_input, text_embeddings, output=None, generator=None, contrast_loss=False, contrast_perc=0):
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = 30 # Number of denoising steps
guidance_scale = 7.5 # Scale for classifier-free guidance
if generator is None:
generator = torch.manual_seed(32) # Seed generator to create the inital latent noise
batch_size = 1
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
#for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
for i, t in enumerate(scheduler.timesteps):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
#### ADDITIONAL GUIDANCE ###
if contrast_loss:
blue_loss_scale = 70
if i % 5 == 0:
# Requires grad on the latents
latents = latents.detach().requires_grad_()
# Get the predicted x0:
latents_x0 = latents - sigma * noise_pred
# latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
# Decode to image space
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
# Calculate loss
loss = blue_loss(denoised_images, contrast_perc=contrast_perc) * blue_loss_scale
# Occasionally print it out
if i % 10 == 0:
print(i, 'loss:', loss.item())
# Get gradient
cond_grad = torch.autograd.grad(loss, latents)[0]
# Modify the latents based on this gradient
latents = latents.detach() - cond_grad * sigma ** 2
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents).prev_sample
if output:
output = latents_to_pil(latents)[0]
return latents_to_pil(latents)[0]
concept_embeds = load_learned_embeds()
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
#token_emb_layer # Vocab size 49408, emb_dim 768
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
#pos_emb_layer
def func_generate(query, concept_idx, seed_start, contrast_loss=False, contrast_perc=None):
prompt = query + ' in the style of bulb'
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True,
return_tensors="pt")
input_ids = text_input.input_ids.to(torch_device)
# Get token embeddings
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
position_embeddings = pos_emb_layer(position_ids)
s = seed_start
token_embeddings = token_emb_layer(input_ids)
# The new embedding - our special birb word
replacement_token_embedding = concept_embeds[concept_idx].to(torch_device)
# Insert this into the token embeddings
token_embeddings[0, torch.where(input_ids[0] == 22373)] = replacement_token_embedding.to(torch_device)
# Combine with pos embs
input_embeddings = token_embeddings + position_embeddings
# Feed through to get final output embs
modified_output_embeddings = get_output_embeds(input_embeddings)
# And generate an image with this:
if contrast_loss and seed_values[concept_idx] > 0:
s = seed_values[concept_idx]
else:
s = random.randint(s + 1, s + 30)
seed_values[concept_idx] = s
g = torch.manual_seed(s)
return generate_with_embs(text_input, modified_output_embeddings, generator=g, contrast_loss=contrast_loss, contrast_perc=contrast_perc)
|