Spaces:
Running
Running
File size: 17,434 Bytes
029c7a1 45d10c4 c78ec74 0eaca07 029c7a1 350b1a0 029c7a1 350b1a0 8e79582 350b1a0 8e79582 350b1a0 029c7a1 350b1a0 029c7a1 9c75413 0eaca07 9c75413 0eaca07 2b72059 029c7a1 350b1a0 029c7a1 350b1a0 029c7a1 0eaca07 c78ec74 d03ef17 029c7a1 0eaca07 029c7a1 d03ef17 8e79582 d03ef17 8e79582 7f62749 8e79582 0eaca07 7f62749 0eaca07 8e79582 0eaca07 d03ef17 c0a6bc9 c78ec74 74f95a7 c78ec74 c0a6bc9 7ec48d6 0eaca07 350b1a0 c0a6bc9 350b1a0 0eaca07 350b1a0 c0a6bc9 350b1a0 c0a6bc9 350b1a0 7f62749 350b1a0 8e79582 350b1a0 9c75413 350b1a0 c0a6bc9 350b1a0 0eaca07 350b1a0 0eaca07 350b1a0 c0a6bc9 029c7a1 9c75413 029c7a1 8e79582 0eaca07 7f62749 350b1a0 af21e05 7f62749 413cf6e 029c7a1 c0a6bc9 9c75413 c0a6bc9 0eaca07 029c7a1 7f62749 c0a6bc9 029c7a1 c0a6bc9 0eaca07 029c7a1 7f62749 029c7a1 7f62749 c0a6bc9 7f62749 c78ec74 d03ef17 7f62749 c78ec74 7f62749 0eaca07 c0a6bc9 c78ec74 0eaca07 c0a6bc9 7ec48d6 029c7a1 c0a6bc9 029c7a1 c0a6bc9 029c7a1 c0a6bc9 029c7a1 c0a6bc9 7ec48d6 029c7a1 c0a6bc9 0eaca07 029c7a1 c0a6bc9 7ec48d6 0eaca07 c0a6bc9 8fb8d86 0eaca07 7ec48d6 0eaca07 7ec48d6 029c7a1 c0a6bc9 350b1a0 9c75413 350b1a0 d03ef17 350b1a0 9c75413 350b1a0 0eaca07 350b1a0 0eaca07 8fb8d86 0eaca07 8fb8d86 0eaca07 8fb8d86 350b1a0 0eaca07 350b1a0 8fb8d86 0eaca07 350b1a0 0eaca07 350b1a0 0eaca07 350b1a0 0eaca07 350b1a0 0eaca07 9c75413 d03ef17 0eaca07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
import time
from nltk.tokenize import sent_tokenize
from googleapiclient.discovery import build
from collections import Counter
import re, math
from sentence_transformers import SentenceTransformer, util
import asyncio
import httpx
from bs4 import BeautifulSoup
import numpy as np
import concurrent
from multiprocessing import Pool
from const import url_types
from collections import defaultdict
WORD = re.compile(r"\w+")
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
months = {
"January": "01",
"February": "02",
"March": "03",
"April": "04",
"May": "05",
"June": "06",
"July": "07",
"August": "08",
"September": "09",
"October": "10",
"November": "11",
"December": "12",
}
color_map = [
"#cf2323",
"#d65129",
"#d66329",
"#d67129",
"#eb9d59",
"#c2ad36",
"#d6ae29",
"#d6b929",
"#e1ed72",
"#c2db76",
"#a2db76",
]
def text_to_vector(text):
words = WORD.findall(text)
return Counter(words)
def cosineSim(text1, text2):
vector1 = text_to_vector(text1)
vector2 = text_to_vector(text2)
# print vector1,vector2
cosine = get_cosine(vector1, vector2)
return cosine
def get_cosine(vec1, vec2):
intersection = set(vec1.keys()) & set(vec2.keys())
numerator = sum([vec1[x] * vec2[x] for x in intersection])
sum1 = sum([vec1[x] ** 2 for x in vec1.keys()])
sum2 = sum([vec2[x] ** 2 for x in vec2.keys()])
denominator = math.sqrt(sum1) * math.sqrt(sum2)
if denominator == 0:
return 0.0
else:
return float(numerator) / denominator
def split_sentence_blocks(text, size):
if size == "Paragraph":
blocks = text.strip().split("\n")
return blocks
else:
sents = sent_tokenize(text.strip())
return sents
def build_date(year=2024, month="March", day=1):
return f"{year}{months[month]}{day}"
def split_ngrams(text, n):
words = text.split()
return [words[i : i + n] for i in range(len(words) - n + 1)]
def sentence_similarity(text1, text2):
embedding_1 = model.encode(text1, convert_to_tensor=True)
embedding_2 = model.encode(text2, convert_to_tensor=True)
o = util.pytorch_cos_sim(embedding_1, embedding_2)
return o.item()
async def get_url_data(url, client):
try:
r = await client.get(url)
if r.status_code == 200:
soup = BeautifulSoup(r.content, "html.parser")
return soup
except Exception:
return None
async def parallel_scrap(urls):
async with httpx.AsyncClient(timeout=30) as client:
tasks = []
for url in urls:
tasks.append(get_url_data(url=url, client=client))
results = await asyncio.gather(*tasks, return_exceptions=True)
return results
def merge_ngrams_into_sentence(ngrams):
if ngrams == None:
return ""
if len(ngrams) > 20:
ngrams = ngrams[:20]
merged_sentence = []
i = 0
for ngram in ngrams:
overlap = len(set(ngram) & set(merged_sentence[-len(ngram) :]))
if overlap == 0:
merged_sentence.extend(ngram)
elif overlap < len(ngram):
merged_sentence.extend(ngram[overlap:])
return " ".join(merged_sentence)
def remove_ngrams_after(ngrams, target_ngram):
try:
index = ngrams.index(target_ngram)
return ngrams[: index + 1]
except ValueError:
return None
def matching_score(sentence_content_tuple):
sentence, content, score = sentence_content_tuple
if sentence in content:
return 1, sentence
# if score > 0.9:
# return score
else:
n = 5
# ngrams = split_ngrams(sentence, n)
# if len(ngrams) == 0:
# return 0
# matched = [x for x in ngrams if " ".join(x) in content]
# return len(matched) / len(ngrams)
# list comprehension matching
# ngrams_sentence = split_ngrams(sentence, n)
# ngrams_content = [tuple(ngram) for ngram in split_ngrams(content, n)]
# if len(ngrams_sentence) == 0:
# return 0, ""
# matched_ngrams = [
# 1 for ngram in ngrams_sentence if tuple(ngram) in ngrams_content
# ]
# matched_count = sum(matched_ngrams)
# set intersection matching
ngrams_sentence = set(split_ngrams(sentence, n))
ngrams_content = set(split_ngrams(content, n))
if len(ngrams_sentence) == 0:
return 0, ""
matched_ngrams = ngrams_sentence.intersection(ngrams_content)
matched_count = len(matched_ngrams)
# matched content
matched_content_ngrams = []
found = False
last_found = None
for ngram in ngrams_sentence:
for ngram_content in ngrams_content:
if tuple(ngram) == ngram_content:
found = True
last_found = ngram_content
if found:
matched_content_ngrams.append(ngram_content)
matched_content_ngrams = remove_ngrams_after(
matched_content_ngrams, last_found
)
matched_content = merge_ngrams_into_sentence(matched_content_ngrams)
return matched_count / len(ngrams_sentence), matched_content
def process_with_multiprocessing(input_data):
with Pool(processes=8) as pool:
scores = pool.map(matching_score, input_data)
return scores
def map_sentence_url(sentences, score_array):
sentenceToMaxURL = [-1] * len(sentences)
for j in range(len(sentences)):
if j > 0:
maxScore = score_array[sentenceToMaxURL[j - 1]][j]
sentenceToMaxURL[j] = sentenceToMaxURL[j - 1]
else:
maxScore = -1
for i in range(len(score_array)):
margin = (
0.05
if (j > 0 and sentenceToMaxURL[j] == sentenceToMaxURL[j - 1])
else 0
)
if score_array[i][j] - maxScore > margin:
maxScore = score_array[i][j]
sentenceToMaxURL[j] = i
return sentenceToMaxURL
def check_url_category(url):
for category, urls in url_types.items():
for u in urls:
if u in url:
return category
return "Internet Source"
def google_search(
plag_option,
sentences,
url_count,
score_array,
url_list,
snippets,
sorted_date,
domains_to_skip,
api_key,
cse_id,
**kwargs,
):
service = build("customsearch", "v1", developerKey=api_key)
num_pages = 1
for i, sentence in enumerate(sentences):
results = (
service.cse()
.list(q=sentence, cx=cse_id, sort=sorted_date, **kwargs)
.execute()
)
if "items" in results and len(results["items"]) > 0:
for count, link in enumerate(results["items"]):
if count >= num_pages:
break
# skip user selected domains
if (domains_to_skip is not None) and any(
("." + domain) in link["link"] for domain in domains_to_skip
):
continue
# clean up snippet of '...'
snippet = link["snippet"]
ind = snippet.find("...")
if ind < 20 and ind > 9:
snippet = snippet[ind + len("... ") :]
ind = snippet.find("...")
if ind > len(snippet) - 5:
snippet = snippet[:ind]
# update cosine similarity between snippet and given text
url = link["link"]
if url not in url_list:
url_list.append(url)
score_array.append([0] * len(sentences))
snippets.append([""] * len(sentences))
url_count[url] = url_count[url] + 1 if url in url_count else 1
snippets[url_list.index(url)][i] = snippet
if plag_option == "Standard":
score_array[url_list.index(url)][i] = cosineSim(
sentence, snippet
)
else:
score_array[url_list.index(url)][i] = sentence_similarity(
sentence, snippet
)
return url_count, score_array
def plagiarism_check(
plag_option,
input,
year_from,
month_from,
day_from,
year_to,
month_to,
day_to,
domains_to_skip,
source_block_size,
):
# api_key = "AIzaSyCLyCCpOPLZWuptuPAPSg8cUIZhdEMVf6g"
# api_key = "AIzaSyA5VVwY1eEoIoflejObrxFDI0DJvtbmgW8"
api_key = "AIzaSyCLyCCpOPLZWuptuPAPSg8cUIZhdEMVf6g"
# api_key = "AIzaSyCS1WQDMl1IMjaXtwSd_2rA195-Yc4psQE"
# api_key = "AIzaSyCB61O70B8AC3l5Kk3KMoLb6DN37B7nqIk"
# api_key = "AIzaSyCg1IbevcTAXAPYeYreps6wYWDbU0Kz8tg"
# api_key = "AIzaSyA5VVwY1eEoIoflejObrxFDI0DJvtbmgW8"
cse_id = "851813e81162b4ed4"
url_scores = []
sentence_scores = []
sentences = split_sentence_blocks(input, source_block_size)
url_count = {}
score_array = []
url_list = []
snippets = []
date_from = build_date(year_from, month_from, day_from)
date_to = build_date(year_to, month_to, day_to)
sort_date = f"date:r:{date_from}:{date_to}"
# get list of URLS to check
start_time = time.perf_counter()
url_count, score_array = google_search(
plag_option,
sentences,
url_count,
score_array,
url_list,
snippets,
sort_date,
domains_to_skip,
api_key,
cse_id,
)
print("GOOGLE SEARCH PROCESSING TIME: ", time.perf_counter() - start_time)
# Scrape URLs in list
start_time = time.perf_counter()
soups = asyncio.run(parallel_scrap(url_list))
print("SCRAPING PROCESSING TIME: ", time.perf_counter() - start_time)
input_data = []
for i, soup in enumerate(soups):
if soup:
page_content = soup.text
for j, sent in enumerate(sentences):
input_data.append((sent, page_content, score_array[i][j]))
start_time = time.perf_counter()
scores = process_with_multiprocessing(input_data)
print("MATCHING SCORE PROCESSING TIME: ", time.perf_counter() - start_time)
matched_sentence_array = [
["" for _ in range(len(score_array[0]))]
for _ in range(len(score_array))
]
k = 0
# Update score array for each (soup, sentence)
for i, soup in enumerate(soups):
if soup:
for j, _ in enumerate(sentences):
score_array[i][j] = scores[k][0]
matched_sentence_array[i][j] = scores[k][1]
k += 1
sentenceToMaxURL = map_sentence_url(sentences, score_array)
index = np.unique(sentenceToMaxURL)
url_source = {}
for url in index:
s = [
score_array[url][sen]
for sen in range(len(sentences))
if sentenceToMaxURL[sen] == url
]
url_source[url] = sum(s) / len(s)
index_descending = sorted(url_source, key=url_source.get, reverse=True)
urlMap = {}
for count, i in enumerate(index_descending):
urlMap[i] = count + 1
# build results
for i, sent in enumerate(sentences):
ind = sentenceToMaxURL[i]
if url_source[ind] > 0.1:
sentence_scores.append(
[
sent,
round(url_source[ind] * 100, 2),
url_list[ind],
urlMap[ind],
]
)
else:
sentence_scores.append([sent, None, url_list[ind], -1])
print("SNIPPETS: ", snippets)
snippets = [[item for item in sublist if item] for sublist in snippets]
for ind in index_descending:
if url_source[ind] > 0.1:
matched_sentence_array = [
[item for item in sublist if item]
for sublist in matched_sentence_array
]
matched_sentence = "...".join(
[sent for sent in matched_sentence_array[ind]]
)
if matched_sentence == "":
matched_sentence = "...".join([sent for sent in snippets[ind]])
url_scores.append(
[
url_list[ind],
round(url_source[ind] * 100, 2),
urlMap[ind],
matched_sentence,
]
)
return sentence_scores, url_scores
def html_highlight(
plag_option,
input,
year_from,
month_from,
day_from,
year_to,
month_to,
day_to,
domains_to_skip,
source_block_size,
):
start_time = time.perf_counter()
sentence_scores, url_scores = plagiarism_check(
plag_option,
input,
year_from,
month_from,
day_from,
year_to,
month_to,
day_to,
domains_to_skip,
source_block_size,
)
html_content = """
<link href='https://fonts.googleapis.com/css?family=Roboto' rel='stylesheet'>
<div style='font-family: {font}; border: 2px solid black; padding: 10px; color: #FFFFFF;'>
<html>
<head>
<title>Toggle Details</title>
<style>
.score-container {
display: flex;
justify-content: space-around;
align-items: left;
padding: 20px;
}
.score-item {
text-align: center;
padding: 10px;
background-color: #636362;
border-radius: 5px;
flex-grow: 1;
margin: 0 5px;
}
.details {
display: none;
padding: 10px;
}
.url-link {
font-size: 1.2em;
}
.url-link span {
margin-right: 10px;
}
.toggle-button {
color: #333;
border: none;
padding: 5px 10px;
text-align: center;
text-decoration: none;
display: inline-block;
cursor: pointer;
}
</style>
</head>
"""
prev_idx = None
combined_sentence = ""
total_score = 0
total_count = 0
category_scores = defaultdict(set)
for sentence, score, url, idx in sentence_scores:
category = check_url_category(url)
if score is None:
total_score += 0
else:
total_score += score
category_scores[category].add(score)
total_count += 1
if idx != prev_idx and prev_idx is not None:
color = color_map[prev_idx - 1]
index_part = f"<span>[{prev_idx}]</span>"
formatted_sentence = f'<p style="background-color: {color}; padding: 2px;">{combined_sentence} {index_part}</p>'
html_content += formatted_sentence
combined_sentence = ""
combined_sentence += " " + sentence
prev_idx = idx
print(category_scores)
total_average_score = round(total_score / total_count, 2)
category_averages = {
category: round((sum(scores) / len(scores)), 2)
for category, scores in category_scores.items()
}
if combined_sentence:
color = color_map[prev_idx - 1]
index_part = ""
if prev_idx != -1:
index_part = f"<span>[{prev_idx}]</span>"
formatted_sentence = f'<p style="background-color: {color}; padding: 2px;">{combined_sentence} {index_part}</p>'
html_content += formatted_sentence
html_content += "<hr>"
html_content += f"""
<div class="score-container">
<div class="score-item">
<h3>Overall Similarity</h3>
<p>{total_average_score}%</p>
</div>
"""
for category, score in category_averages.items():
html_content += f"""
<div class="score-item"><h3>{category}</h3><p>{score}%</p></div>
"""
html_content += "</div>"
for url, score, idx, sentence in url_scores:
url_category = check_url_category(url)
color = color_map[idx - 1]
formatted_url = f"""
<p style="background-color: {color}; padding: 5px; font-size: 1.2em">[{idx}] <b>{url}</b></p><p><i>{url_category}</i></p>
<p> --- <b>Matching Score: </b>{score}%</p>
<p> --- <b>Original Source Content: </b>{sentence}</p>
"""
# formatted_url = f"""
# <div class="url-link">
# <p style="background-color: {color}; padding: 5px; font-size: 1.2em">[{idx}] <b>{url}</b></p><p>{url_category}</p>
# <a href="#" onclick="toggleDetails(event)" class="toggle-button">></a>
# </div>
# <div id="detailsContainer" class="details">
# <p> --- <b>Matching Score: </b>{score}%</p>
# <p> --- <b>Original Source Content: </b>{sentence}</p>
# </div>
# """
html_content += formatted_url
html_content += "</html>"
print("PLAGIARISM PROCESSING TIME: ", time.perf_counter() - start_time)
return html_content |