Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,690 Bytes
235f049 779b488 235f049 42b280c 235f049 42b280c 7d34bf2 235f049 e817668 235f049 42b280c cf8e85e f5d475f cf8e85e 779b488 235f049 42b280c 779b488 42b280c 235f049 779b488 235f049 e817668 779b488 235f049 779b488 235f049 779b488 235f049 779b488 42b280c b22fc2d 42b280c b22fc2d 42b280c f5d475f 779b488 e817668 cf972b9 42b280c 779b488 cf972b9 42b280c 779b488 42b280c f5d475f 42b280c cf972b9 e817668 42b280c b22fc2d 42b280c b22fc2d 42b280c f5d475f 779b488 e817668 cf972b9 42b280c cf972b9 42b280c 779b488 f5d475f 779b488 f5d475f 779b488 42b280c cf972b9 42b280c e817668 481fc63 560b41f 481fc63 d56cd3d e817668 2f9c9b9 e817668 d2b9d98 e817668 d2b9d98 d9fb9af d2b9d98 e817668 42b280c cbdc9ab bc8e1b9 e817668 779b488 e817668 42b280c e817668 42b280c e817668 d2b9d98 e817668 d2b9d98 9e766ad d2b9d98 e817668 779b488 e817668 b22fc2d e817668 d2b9d98 e817668 cf972b9 e817668 cf972b9 e817668 235f049 e817668 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
import tempfile
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
Qwen2VLForConditionalGeneration,
Qwen2_5_VLForConditionalGeneration,
AutoModelForImageTextToText,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load VIREX-062225-exp
MODEL_ID_M = "prithivMLmods/VIREX-062225-exp"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load DREX-062225-exp
MODEL_ID_X = "prithivMLmods/DREX-062225-exp"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Gemma3n-E4B-it
MODEL_ID_G = "google/gemma-3n-E4B-it"
processor_g = AutoProcessor.from_pretrained(MODEL_ID_G, trust_remote_code=True)
model_g = AutoModelForImageTextToText.from_pretrained(
MODEL_ID_G,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Gemma3n-E2B-it
MODEL_ID_N = "google/gemma-3n-E2B-it"
processor_n = AutoProcessor.from_pretrained(MODEL_ID_N, trust_remote_code=True)
model_n = AutoModelForImageTextToText.from_pretrained(
MODEL_ID_N,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
def downsample_video(video_path):
"""
Downsamples the video to evenly spaced frames and saves them to temporary files.
Returns a list of (frame_path, timestamp) and the temp directory.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
temp_dir = tempfile.mkdtemp()
frames = []
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
frame_path = os.path.join(temp_dir, f"frame_{i}.jpg")
Image.fromarray(image).save(frame_path)
timestamp = round(i / fps, 2)
frames.append((frame_path, timestamp))
vidcap.release()
return frames, temp_dir
@spaces.GPU
def generate_image(model_name: str, text: str, image_path: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for image input.
"""
if model_name == "VIREX-062225-7B-exp":
processor = processor_m
model = model_m
elif model_name == "DREX-062225-7B-exp":
processor = processor_x
model = model_x
elif model_name == "Gemma3n-E4B-it":
processor = processor_g
model = model_g
elif model_name == "Gemma3n-E2B-it":
processor = processor_n
model = model_n
else:
yield "Invalid model selected.", "Invalid model selected."
return
if image_path is None:
yield "Please upload an image.", "Please upload an image."
return
messages = [{"role": "user", "content": [{"type": "text", "text": text}, {"type": "image", "image": image_path}]}]
if model_name in ["Gemma3n-E4B-it", "Gemma3n-E2B-it"]:
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
else:
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=[image_path],
return_tensors="pt",
padding=True,
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer, buffer
@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for video input.
"""
if model_name == "VIREX-062225-7B-exp":
processor = processor_m
model = model_m
elif model_name == "DREX-062225-7B-exp":
processor = processor_x
model = model_x
elif model_name == "Gemma3n-E4B-it":
processor = processor_g
model = model_g
elif model_name == "Gemma3n-E2B-it":
processor = processor_n
model = model_n
else:
yield "Invalid model selected.", "Invalid model selected."
return
if video_path is None:
yield "Please upload a video.", "Please upload a video."
return
frames, temp_dir = downsample_video(video_path)
content = [{"type": "text", "text": text}]
for frame_path, timestamp in frames:
content.append({"type": "text", "text": f"Frame {timestamp}:"})
content.append({"type": "image", "image": frame_path})
messages = [{"role": "user", "content": content}]
if model_name in ["Gemma3n-E4B-it", "Gemma3n-E2B-it"]:
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
else:
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
images = [frame_path for frame_path, _ in frames]
inputs = processor(
text=[prompt_full],
images=images,
return_tensors="pt",
padding=True,
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
# Define examples for image and video inference
image_examples = [
["Convert this page to doc [text] precisely.", "images/3.png"],
["Convert this page to doc [text] precisely.", "images/4.png"],
["Convert this page to doc [text] precisely.", "images/1.png"],
["Convert chart to OTSL.", "images/2.png"]
]
video_examples = [
["Explain the video in detail.", "videos/2.mp4"],
["Explain the ad in detail.", "videos/1.mp4"]
]
# Added CSS to style the output area as a "Canvas"
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
.canvas-output {
border: 2px solid #4682B4;
border-radius: 10px;
padding: 20px;
}
"""
# Create the Gradio Interface
with gr.Blocks(css=css, theme=gr.themes.Citrus()) as demo:
gr.Markdown("# **[Doc VLMs OCR](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Image Inference"):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="filepath", label="Image")
image_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=image_examples,
inputs=[image_query, image_upload]
)
with gr.TabItem("Video Inference"):
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
video_upload = gr.Video(label="Video")
video_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=video_examples,
inputs=[video_query, video_upload]
)
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Column():
with gr.Column(elem_classes="canvas-output"):
gr.Markdown("## Result Canvas")
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2)
markdown_output = gr.Markdown(label="Formatted Result (Result.Md)")
model_choice = gr.Radio(
choices=["DREX-062225-7B-exp", "VIREX-062225-7B-exp", "Gemma3n-E4B-it", "Gemma3n-E2B-it"],
label="Select Model",
value="DREX-062225-7B-exp"
)
image_submit.click(
fn=generate_image,
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output]
)
video_submit.click(
fn=generate_video,
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output]
)
if __name__ == "__main__":
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True) |