Doc-VLMs-OCR / app.py
prithivMLmods's picture
Update app.py
779b488 verified
raw
history blame
11.7 kB
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
import tempfile
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
Qwen2VLForConditionalGeneration,
Qwen2_5_VLForConditionalGeneration,
AutoModelForImageTextToText,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load VIREX-062225-exp
MODEL_ID_M = "prithivMLmods/VIREX-062225-exp"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load DREX-062225-exp
MODEL_ID_X = "prithivMLmods/DREX-062225-exp"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Gemma3n-E4B-it
MODEL_ID_G = "google/gemma-3n-E4B-it"
processor_g = AutoProcessor.from_pretrained(MODEL_ID_G, trust_remote_code=True)
model_g = AutoModelForImageTextToText.from_pretrained(
MODEL_ID_G,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Gemma3n-E2B-it
MODEL_ID_N = "google/gemma-3n-E2B-it"
processor_n = AutoProcessor.from_pretrained(MODEL_ID_N, trust_remote_code=True)
model_n = AutoModelForImageTextToText.from_pretrained(
MODEL_ID_N,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
def downsample_video(video_path):
"""
Downsamples the video to evenly spaced frames and saves them to temporary files.
Returns a list of (frame_path, timestamp) and the temp directory.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
temp_dir = tempfile.mkdtemp()
frames = []
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
frame_path = os.path.join(temp_dir, f"frame_{i}.jpg")
Image.fromarray(image).save(frame_path)
timestamp = round(i / fps, 2)
frames.append((frame_path, timestamp))
vidcap.release()
return frames, temp_dir
@spaces.GPU
def generate_image(model_name: str, text: str, image_path: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for image input.
"""
if model_name == "VIREX-062225-7B-exp":
processor = processor_m
model = model_m
elif model_name == "DREX-062225-7B-exp":
processor = processor_x
model = model_x
elif model_name == "Gemma3n-E4B-it":
processor = processor_g
model = model_g
elif model_name == "Gemma3n-E2B-it":
processor = processor_n
model = model_n
else:
yield "Invalid model selected.", "Invalid model selected."
return
if image_path is None:
yield "Please upload an image.", "Please upload an image."
return
messages = [{"role": "user", "content": [{"type": "text", "text": text}, {"type": "image", "image": image_path}]}]
if model_name in ["Gemma3n-E4B-it", "Gemma3n-E2B-it"]:
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
else:
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=[image_path],
return_tensors="pt",
padding=True,
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer, buffer
@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for video input.
"""
if model_name == "VIREX-062225-7B-exp":
processor = processor_m
model = model_m
elif model_name == "DREX-062225-7B-exp":
processor = processor_x
model = model_x
elif model_name == "Gemma3n-E4B-it":
processor = processor_g
model = model_g
elif model_name == "Gemma3n-E2B-it":
processor = processor_n
model = model_n
else:
yield "Invalid model selected.", "Invalid model selected."
return
if video_path is None:
yield "Please upload a video.", "Please upload a video."
return
frames, temp_dir = downsample_video(video_path)
content = [{"type": "text", "text": text}]
for frame_path, timestamp in frames:
content.append({"type": "text", "text": f"Frame {timestamp}:"})
content.append({"type": "image", "image": frame_path})
messages = [{"role": "user", "content": content}]
if model_name in ["Gemma3n-E4B-it", "Gemma3n-E2B-it"]:
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
else:
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
images = [frame_path for frame_path, _ in frames]
inputs = processor(
text=[prompt_full],
images=images,
return_tensors="pt",
padding=True,
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
# Define examples for image and video inference
image_examples = [
["Convert this page to doc [text] precisely.", "images/3.png"],
["Convert this page to doc [text] precisely.", "images/4.png"],
["Convert this page to doc [text] precisely.", "images/1.png"],
["Convert chart to OTSL.", "images/2.png"]
]
video_examples = [
["Explain the video in detail.", "videos/2.mp4"],
["Explain the ad in detail.", "videos/1.mp4"]
]
# Added CSS to style the output area as a "Canvas"
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
.canvas-output {
border: 2px solid #4682B4;
border-radius: 10px;
padding: 20px;
}
"""
# Create the Gradio Interface
with gr.Blocks(css=css, theme=gr.themes.Citrus()) as demo:
gr.Markdown("# **[Doc VLMs OCR](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Image Inference"):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="filepath", label="Image")
image_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=image_examples,
inputs=[image_query, image_upload]
)
with gr.TabItem("Video Inference"):
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
video_upload = gr.Video(label="Video")
video_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=video_examples,
inputs=[video_query, video_upload]
)
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Column():
with gr.Column(elem_classes="canvas-output"):
gr.Markdown("## Result Canvas")
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2)
markdown_output = gr.Markdown(label="Formatted Result (Result.Md)")
model_choice = gr.Radio(
choices=["DREX-062225-7B-exp", "VIREX-062225-7B-exp", "Gemma3n-E4B-it", "Gemma3n-E2B-it"],
label="Select Model",
value="DREX-062225-7B-exp"
)
image_submit.click(
fn=generate_image,
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output]
)
video_submit.click(
fn=generate_video,
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output]
)
if __name__ == "__main__":
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)