Doc-VLMs / app.py
prithivMLmods's picture
Update app.py
9dc7658 verified
raw
history blame
6.66 kB
import gradio as gr
from transformers import AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer
from threading import Thread
import re
import time
import torch
import spaces
import subprocess
import uuid
import cv2
import numpy as np
from PIL import Image
from io import BytesIO
# Install flash-attn
subprocess.run(
'pip install flash-attn --no-build-isolation',
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
shell=True
)
# Load processor and model.
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct")
model = AutoModelForImageTextToText.from_pretrained(
"HuggingFaceTB/SmolVLM2-2.2B-Instruct",
_attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16
).to("cuda:0")
def downsample_video(video_path):
"""
Extracts 10 evenly spaced frames from the video at video_path.
Each frame is converted from BGR to RGB and returned as a PIL Image.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
if total_frames <= 0 or fps <= 0:
vidcap.release()
return frames
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, frame = vidcap.read()
if success:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(frame)
frames.append((pil_image, round(i / fps, 2)))
vidcap.release()
return frames
@spaces.GPU
def model_inference(input_dict, history, max_tokens):
text = input_dict["text"]
user_content = []
media_queue = []
# Process input files.
for file in input_dict.get("files", []):
if file.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
media_queue.append({"type": "image", "path": file})
elif file.endswith((".mp4", ".mov", ".avi", ".mkv", ".flv")):
# Extract frames from video using OpenCV.
frames = downsample_video(file)
for frame, timestamp in frames:
temp_file = f"video_frame_{uuid.uuid4().hex}.png"
frame.save(temp_file)
media_queue.append({"type": "image", "path": temp_file})
# Build the conversation messages.
if not history:
text = text.strip()
# Use only the "<image>" token for inserting images.
if "<image>" in text:
parts = re.split(r'(<image>)', text)
for part in parts:
if part == "<image>" and media_queue:
user_content.append(media_queue.pop(0))
elif part.strip():
user_content.append({"type": "text", "text": part.strip()})
else:
user_content.append({"type": "text", "text": text})
for media in media_queue:
user_content.append(media)
resulting_messages = [{"role": "user", "content": user_content}]
else:
resulting_messages = []
user_content = []
media_queue = []
# Process history: now only image files are expected.
for hist in history:
if hist["role"] == "user" and isinstance(hist["content"], tuple):
file_name = hist["content"][0]
if file_name.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
media_queue.append({"type": "image", "path": file_name})
for hist in history:
if hist["role"] == "user" and isinstance(hist["content"], str):
text = hist["content"]
parts = re.split(r'(<image>)', text)
for part in parts:
if part == "<image>" and media_queue:
user_content.append(media_queue.pop(0))
elif part.strip():
user_content.append({"type": "text", "text": part.strip()})
elif hist["role"] == "assistant":
resulting_messages.append({
"role": "user",
"content": user_content
})
resulting_messages.append({
"role": "assistant",
"content": [{"type": "text", "text": hist["content"]}]
})
user_content = []
if text == "":
gr.Error("Please input a query and optionally image(s).")
print("resulting_messages", resulting_messages)
inputs = processor.apply_chat_template(
resulting_messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
)
inputs = inputs.to(model.device)
# Generate response with streaming.
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_tokens)
thread = Thread(target=model.generate, kwargs=generation_args)
thread.start()
yield "..."
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
examples = [
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
[{"text": "What art era does this artpiece <image> belong to?", "files": ["example_images/rococo.jpg"]}],
[{"text": "Describe this image.", "files": ["example_images/mosque.jpg"]}],
[{"text": "When was this purchase made and how much did it cost?", "files": ["example_images/fiche.jpg"]}],
[{"text": "What is the date in this document?", "files": ["example_images/document.jpg"]}],
[{"text": "What is happening in the video?", "files": ["example_images/short.mp4"]}],
]
demo = gr.ChatInterface(
fn=model_inference,
title="SmolVLM2: The Smollest Video Model Ever 📺",
description=(
"Play with [SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) in this demo. "
"To get started, upload an image and text or try one of the examples. "
"This demo doesn't use history for the chat, so every chat you start is a new conversation."
),
examples=examples,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False,
additional_inputs=[gr.Slider(minimum=100, maximum=500, step=50, value=200, label="Max Tokens")],
type="messages"
)
demo.launch(debug=True)