Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer | |
from threading import Thread | |
import re | |
import time | |
import torch | |
import spaces | |
import subprocess | |
import uuid | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
from io import BytesIO | |
# Install flash-attn | |
subprocess.run( | |
'pip install flash-attn --no-build-isolation', | |
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, | |
shell=True | |
) | |
# Load processor and model. | |
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct") | |
model = AutoModelForImageTextToText.from_pretrained( | |
"HuggingFaceTB/SmolVLM2-2.2B-Instruct", | |
_attn_implementation="flash_attention_2", | |
torch_dtype=torch.bfloat16 | |
).to("cuda:0") | |
def downsample_video(video_path): | |
""" | |
Extracts 10 evenly spaced frames from the video at video_path. | |
Each frame is converted from BGR to RGB and returned as a PIL Image. | |
""" | |
vidcap = cv2.VideoCapture(video_path) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
frames = [] | |
if total_frames <= 0 or fps <= 0: | |
vidcap.release() | |
return frames | |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
for i in frame_indices: | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, frame = vidcap.read() | |
if success: | |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(frame) | |
frames.append((pil_image, round(i / fps, 2))) | |
vidcap.release() | |
return frames | |
def model_inference(input_dict, history, max_tokens): | |
text = input_dict["text"] | |
user_content = [] | |
media_queue = [] | |
# Process input files. | |
for file in input_dict.get("files", []): | |
if file.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")): | |
media_queue.append({"type": "image", "path": file}) | |
elif file.endswith((".mp4", ".mov", ".avi", ".mkv", ".flv")): | |
# Extract frames from video using OpenCV. | |
frames = downsample_video(file) | |
for frame, timestamp in frames: | |
temp_file = f"video_frame_{uuid.uuid4().hex}.png" | |
frame.save(temp_file) | |
media_queue.append({"type": "image", "path": temp_file}) | |
# Build the conversation messages. | |
if not history: | |
text = text.strip() | |
# Use only the "<image>" token for inserting images. | |
if "<image>" in text: | |
parts = re.split(r'(<image>)', text) | |
for part in parts: | |
if part == "<image>" and media_queue: | |
user_content.append(media_queue.pop(0)) | |
elif part.strip(): | |
user_content.append({"type": "text", "text": part.strip()}) | |
else: | |
user_content.append({"type": "text", "text": text}) | |
for media in media_queue: | |
user_content.append(media) | |
resulting_messages = [{"role": "user", "content": user_content}] | |
else: | |
resulting_messages = [] | |
user_content = [] | |
media_queue = [] | |
# Process history: now only image files are expected. | |
for hist in history: | |
if hist["role"] == "user" and isinstance(hist["content"], tuple): | |
file_name = hist["content"][0] | |
if file_name.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")): | |
media_queue.append({"type": "image", "path": file_name}) | |
for hist in history: | |
if hist["role"] == "user" and isinstance(hist["content"], str): | |
text = hist["content"] | |
parts = re.split(r'(<image>)', text) | |
for part in parts: | |
if part == "<image>" and media_queue: | |
user_content.append(media_queue.pop(0)) | |
elif part.strip(): | |
user_content.append({"type": "text", "text": part.strip()}) | |
elif hist["role"] == "assistant": | |
resulting_messages.append({ | |
"role": "user", | |
"content": user_content | |
}) | |
resulting_messages.append({ | |
"role": "assistant", | |
"content": [{"type": "text", "text": hist["content"]}] | |
}) | |
user_content = [] | |
if text == "": | |
gr.Error("Please input a query and optionally image(s).") | |
print("resulting_messages", resulting_messages) | |
inputs = processor.apply_chat_template( | |
resulting_messages, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_dict=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to(model.device) | |
# Generate response with streaming. | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_tokens) | |
thread = Thread(target=model.generate, kwargs=generation_args) | |
thread.start() | |
yield "..." | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
time.sleep(0.01) | |
yield buffer | |
examples = [ | |
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}], | |
[{"text": "What art era does this artpiece <image> belong to?", "files": ["example_images/rococo.jpg"]}], | |
[{"text": "Describe this image.", "files": ["example_images/mosque.jpg"]}], | |
[{"text": "When was this purchase made and how much did it cost?", "files": ["example_images/fiche.jpg"]}], | |
[{"text": "What is the date in this document?", "files": ["example_images/document.jpg"]}], | |
[{"text": "What is happening in the video?", "files": ["example_images/short.mp4"]}], | |
] | |
demo = gr.ChatInterface( | |
fn=model_inference, | |
title="SmolVLM2: The Smollest Video Model Ever 📺", | |
description=( | |
"Play with [SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) in this demo. " | |
"To get started, upload an image and text or try one of the examples. " | |
"This demo doesn't use history for the chat, so every chat you start is a new conversation." | |
), | |
examples=examples, | |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"), | |
stop_btn="Stop Generation", | |
multimodal=True, | |
cache_examples=False, | |
additional_inputs=[gr.Slider(minimum=100, maximum=500, step=50, value=200, label="Max Tokens")], | |
type="messages" | |
) | |
demo.launch(debug=True) |