File size: 17,654 Bytes
55f563b
 
 
 
e86a765
55f563b
 
 
 
e86a765
55f563b
e86a765
55f563b
 
 
 
 
 
 
 
 
 
 
 
b942456
 
 
 
 
55f563b
b942456
55f563b
b942456
55f563b
b942456
 
 
 
 
55f563b
 
 
b942456
55f563b
40993df
3743402
b942456
55f563b
b942456
55f563b
 
 
e86a765
b942456
 
 
 
6d1a1b7
b942456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2741d7d
8ec6920
b942456
 
 
 
8ec6920
55f563b
 
 
b942456
55f563b
 
 
 
 
 
 
 
 
e86a765
2741d7d
 
 
 
538e973
 
2741d7d
 
 
 
 
 
 
 
 
 
55f563b
2741d7d
 
 
 
55f563b
e86a765
 
 
 
b942456
e86a765
 
 
2741d7d
 
 
b942456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b71db9
b942456
 
 
8ec6920
b942456
 
 
 
 
a5f372d
b942456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e86a765
55f563b
 
 
 
 
 
 
 
 
 
8ec6920
b942456
 
 
 
 
 
55f563b
e86a765
2741d7d
55f563b
 
b942456
55f563b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e86a765
 
55f563b
e86a765
b942456
55f563b
e86a765
 
 
b942456
 
 
 
 
 
 
 
9b71db9
a5f372d
b942456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b71db9
a5f372d
b942456
 
bd29f11
8ec6920
b942456
 
8ec6920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e86a765
b942456
2741d7d
55f563b
 
 
 
 
 
 
 
 
f014533
a18fa73
f014533
a18fa73
fff10dd
be807bc
8ec6920
f014533
22bb7a7
 
55f563b
 
 
 
 
1a48c6f
55f563b
b942456
2741d7d
cc33eaf
2741d7d
b8a0d2d
91d2c01
eceb410
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
    Qwen2VLForConditionalGeneration,
    AutoProcessor,
)
from transformers.image_utils import load_image

# Additional imports for new TTS
from snac import SNAC
from huggingface_hub import snapshot_download
from dotenv import load_dotenv
load_dotenv()

# Set up device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
tts_device = "cuda" if torch.cuda.is_available() else "cpu"  # for SNAC and Orpheus TTS

# Load DeepHermes Llama (chat/LLM) model
hermes_model_id = "prithivMLmods/DeepHermes-3-Llama-3-3B-Preview-abliterated"
hermes_llm_tokenizer = AutoTokenizer.from_pretrained(hermes_model_id)
hermes_llm_model = AutoModelForCausalLM.from_pretrained(
    hermes_model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
hermes_llm_model.eval()

# Load Qwen2-VL processor and model for multimodal tasks (e.g. video processing)
MODEL_ID_QWEN = "prithivMLmods/Qwen2-VL-OCR2-2B-Instruct" 
processor = AutoProcessor.from_pretrained(MODEL_ID_QWEN, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID_QWEN,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

# Load Orpheus TTS model and SNAC for TTS synthesis
print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(tts_device)

tts_model_name = "canopylabs/orpheus-3b-0.1-ft"
# Download only model config and safetensors
snapshot_download(
    repo_id=tts_model_name,
    allow_patterns=[
        "config.json",
        "*.safetensors",
        "model.safetensors.index.json",
    ],
    ignore_patterns=[
        "optimizer.pt",
        "pytorch_model.bin",
        "training_args.bin",
        "scheduler.pt",
        "tokenizer.json",
        "tokenizer_config.json",
        "special_tokens_map.json",
        "vocab.json",
        "merges.txt",
        "tokenizer.*"
    ]
)
orpheus_tts_model = AutoModelForCausalLM.from_pretrained(tts_model_name, torch_dtype=torch.bfloat16)
orpheus_tts_model.to(tts_device)
orpheus_tts_tokenizer = AutoTokenizer.from_pretrained(tts_model_name)
print(f"Orpheus TTS model loaded to {tts_device}")

# Some global parameters for chat responses
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

# (Image generation related code has been fully removed.)

MAX_SEED = np.iinfo(np.int32).max

# Utility functions
def save_image(img: Image.Image) -> str:
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def progress_bar_html(label: str) -> str:
    return f'''
<div style="display: flex; align-items: center;">
    <span style="margin-right: 10px; font-size: 14px;">{label}</span>
    <div style="width: 110px; height: 5px; background-color: #FFA07A; border-radius: 2px; overflow: hidden;">
        <div style="width: 100%; height: 100%; background-color: #FF4500; animation: loading 1.5s linear infinite;"></div>
    </div>
</div>
<style>
@keyframes loading {{
    0% {{ transform: translateX(-100%); }}
    100% {{ transform: translateX(100%); }}
}}
</style>
    '''

def downsample_video(video_path):
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

def clean_chat_history(chat_history):
    cleaned = []
    for msg in chat_history:
        if isinstance(msg, dict) and isinstance(msg.get("content"), str):
            cleaned.append(msg)
    return cleaned

# New TTS functions (SNAC/Orpheus pipeline)
def process_prompt(prompt, voice, tokenizer, device):
    prompt = f"{voice}: {prompt}"
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids
    start_token = torch.tensor([[128259]], dtype=torch.int64)  # Start of human
    end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)  # End markers
    modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
    attention_mask = torch.ones_like(modified_input_ids)
    return modified_input_ids.to(device), attention_mask.to(device)

def parse_output(generated_ids):
    token_to_find = 128257
    token_to_remove = 128258
    token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
    if len(token_indices[1]) > 0:
        last_occurrence_idx = token_indices[1][-1].item()
        cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
    else:
        cropped_tensor = generated_ids
    processed_rows = []
    for row in cropped_tensor:
        masked_row = row[row != token_to_remove]
        processed_rows.append(masked_row)
    code_lists = []
    for row in processed_rows:
        row_length = row.size(0)
        new_length = (row_length // 7) * 7
        trimmed_row = row[:new_length]
        trimmed_row = [t - 128266 for t in trimmed_row]
        code_lists.append(trimmed_row)
    return code_lists[0]

def redistribute_codes(code_list, snac_model):
    device = next(snac_model.parameters()).device
    layer_1 = []
    layer_2 = []
    layer_3 = []
    for i in range((len(code_list)+1)//7):
        layer_1.append(code_list[7*i])
        layer_2.append(code_list[7*i+1]-4096)
        layer_3.append(code_list[7*i+2]-(2*4096))
        layer_3.append(code_list[7*i+3]-(3*4096))
        layer_2.append(code_list[7*i+4]-(4*4096))
        layer_3.append(code_list[7*i+5]-(5*4096))
        layer_3.append(code_list[7*i+6]-(6*4096))
    codes = [
        torch.tensor(layer_1, device=device).unsqueeze(0),
        torch.tensor(layer_2, device=device).unsqueeze(0),
        torch.tensor(layer_3, device=device).unsqueeze(0)
    ]
    audio_hat = snac_model.decode(codes)
    return audio_hat.detach().squeeze().cpu().numpy()

def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens):
    if not text.strip():
        return None
    try:
        # Removed in-function progress calls to maintain UI consistency.
        input_ids, attention_mask = process_prompt(text, voice, orpheus_tts_tokenizer, tts_device)
        with torch.no_grad():
            generated_ids = orpheus_tts_model.generate(
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_new_tokens=max_new_tokens,
                do_sample=True,
                temperature=temperature,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                num_return_sequences=1,
                eos_token_id=128258,
            )
        code_list = parse_output(generated_ids)
        audio_samples = redistribute_codes(code_list, snac_model)
        return (24000, audio_samples)
    except Exception as e:
        print(f"Error generating speech: {e}")
        return None

# Main generate function for the chat interface
@spaces.GPU
def generate(
    input_dict: dict,
    chat_history: list[dict],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
):
    """
    Generates chatbot responses with support for multimodal input, video processing,
    TTS, and LLM-augmented TTS.
    
    Trigger commands:
      - "@video-infer": process video.
      - "@<voice>-tts": directly convert text to speech.
      - "@<voice>-llm": infer with the DeepHermes Llama model then convert to speech.
    """
    text = input_dict["text"]
    files = input_dict.get("files", [])
    lower_text = text.strip().lower()

    # Branch for video processing.
    if lower_text.startswith("@video-infer"):
        prompt = text[len("@video-infer"):].strip()
        if files:
            video_path = files[0]
            frames = downsample_video(video_path)
            messages = [
                {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
                {"role": "user", "content": [{"type": "text", "text": prompt}]}
            ]
            for frame in frames:
                image, timestamp = frame
                image_path = f"video_frame_{uuid.uuid4().hex}.png"
                image.save(image_path)
                messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
                messages[1]["content"].append({"type": "image", "url": image_path})
        else:
            messages = [
                {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
                {"role": "user", "content": [{"type": "text", "text": prompt}]}
            ]
        inputs = processor.apply_chat_template(
            messages, tokenize=True, add_generation_prompt=True, return_dict=True, return_tensors="pt"
        ).to("cuda")
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            **inputs,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "temperature": temperature,
            "top_p": top_p,
            "top_k": top_k,
            "repetition_penalty": repetition_penalty,
        }
        thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        yield progress_bar_html("Processing video with Qwen2VL")
        for new_text in streamer:
            buffer += new_text.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
        return

    # Define TTS and LLM tag mappings.
    tts_tags = {"@tara-tts": "tara", "@dan-tts": "dan", "@josh-tts": "josh", "@emma-tts": "emma"}
    llm_tags = {"@tara-llm": "tara", "@dan-llm": "dan", "@josh-llm": "josh", "@emma-llm": "emma"}

    # Branch for direct TTS (no LLM inference).
    for tag, voice in tts_tags.items():
        if lower_text.startswith(tag):
            text = text[len(tag):].strip()
            yield progress_bar_html("Processing with Orpheus")
            audio_output = generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens)
            yield gr.Audio(audio_output, autoplay=True)
            return

    # Branch for LLM-augmented TTS.
    for tag, voice in llm_tags.items():
        if lower_text.startswith(tag):
            text = text[len(tag):].strip()
            conversation = [{"role": "user", "content": text}]
            input_ids = hermes_llm_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
            if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
                input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
            input_ids = input_ids.to(hermes_llm_model.device)
            streamer = TextIteratorStreamer(hermes_llm_tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
            generation_kwargs = {
                "input_ids": input_ids,
                "streamer": streamer,
                "max_new_tokens": max_new_tokens,
                "do_sample": True,
                "top_p": top_p,
                "top_k": 50,
                "temperature": temperature,
                "num_beams": 1,
                "repetition_penalty": repetition_penalty,
            }
            t = Thread(target=hermes_llm_model.generate, kwargs=generation_kwargs)
            t.start()
            outputs = []
            for new_text in streamer:
                outputs.append(new_text)
            final_response = "".join(outputs)
            yield progress_bar_html("Processing with Orpheus")
            audio_output = generate_speech(final_response, voice, temperature, top_p, repetition_penalty, max_new_tokens)
            yield gr.Audio(audio_output, autoplay=True)
            return

    # Default branch for regular chat (text and multimodal without TTS).
    conversation = clean_chat_history(chat_history)
    conversation.append({"role": "user", "content": text})
    # If files are provided, only non-image files (e.g. video) are processed via Qwen2VL.
    if files:
        # Process files using the processor (this branch no longer handles image generation)
        if len(files) > 1:
            inputs_list = [load_image(image) for image in files]
        elif len(files) == 1:
            inputs_list = [load_image(files[0])]
        else:
            inputs_list = []
        messages = [{
            "role": "user",
            "content": [
                *[{"type": "image", "image": img} for img in inputs_list],
                {"type": "text", "text": text},
            ]
        }]
        prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(text=[prompt_full], images=inputs_list, return_tensors="pt", padding=True).to("cuda")
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
        thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        yield progress_bar_html("Processing with Qwen2VL")
        for new_text in streamer:
            buffer += new_text.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
    else:
        input_ids = hermes_llm_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
        if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
            input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
            gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
        input_ids = input_ids.to(hermes_llm_model.device)
        streamer = TextIteratorStreamer(hermes_llm_tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            "input_ids": input_ids,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "top_p": top_p,
            "top_k": top_k,
            "temperature": temperature,
            "num_beams": 1,
            "repetition_penalty": repetition_penalty,
        }
        t = Thread(target=hermes_llm_model.generate, kwargs=generation_kwargs)
        t.start()
        outputs = []
        yield progress_bar_html("Processing with DeepHermes LLM")
        for new_text in streamer:
            outputs.append(new_text)
            yield "".join(outputs)
        final_response = "".join(outputs)
        yield final_response

# Gradio Interface
demo = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
        gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
        gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
        gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
        gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
    ],
    examples=[
        ["@josh-tts Hey! I’m Josh, [gasp] and wow, did I just surprise you with my realistic voice?"],
        ["@dan-llm Explain the General Relativity theorem in short"],
        ["@emma-tts Hey, I’m Emma, [sigh] and yes, I can talk just like a person… even when I’m tired."],
        ["@josh-llm What causes rainbows to form?"],
        ["@dan-tts Yo, I’m Dan, [groan] and yes, I can even sound annoyed if I have to."],
        ["Write python program for array rotation"],
        [{"text": "summarize the letter", "files": ["examples/1.png"]}],
        ["@tara-tts Hey there, my name is Tara, [laugh] and I’m a speech generation model that can sound just like you!"],
        ["@tara-llm Who is Nikola Tesla, and why did he die?"],
        ["@emma-llm Explain the causes of rainbows"],
        [{"text": "@video-infer Summarize the event in video", "files": ["examples/sky.mp4"]}],
        [{"text": "@video-infer Describe the video", "files": ["examples/Missing.mp4"]}],
    ],
    cache_examples=False,
    type="messages",
    description="# **Orpheus Edge** `voice: tara, dan, emma, josh` \n `emotion: <laugh>, <chuckle>, <sigh>, <cough>, <sniffle>, <groan>, <yawn>, <gasp>. Use @video-infer, orpheus: @<voice>-tts, or @<voice>-llm triggers llm response`",
    fill_height=True,
    textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder="‎ Use @tara-tts/@dan-tts for direct TTS or @tara-llm/@dan-llm for LLM+TTS, etc."),
    stop_btn="Stop Generation",
    multimodal=True,
)

if __name__ == "__main__":
    demo.queue(max_size=20).launch(share=True)