File size: 21,084 Bytes
55f563b
 
 
 
e86a765
55f563b
 
 
 
e86a765
55f563b
e86a765
55f563b
 
 
 
 
 
 
 
 
 
 
 
 
b942456
 
 
 
 
55f563b
b942456
 
 
55f563b
b942456
55f563b
b942456
 
 
 
 
 
 
55f563b
 
 
b942456
55f563b
b942456
 
 
 
 
 
55f563b
b942456
55f563b
 
 
e86a765
b942456
 
 
 
 
 
6d1a1b7
b942456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2741d7d
b942456
 
 
 
 
 
 
 
 
 
55f563b
 
 
 
 
2741d7d
55f563b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b942456
 
 
55f563b
 
 
 
 
 
 
 
 
e86a765
2741d7d
 
 
 
55f563b
 
2741d7d
 
 
 
 
 
 
 
 
 
55f563b
2741d7d
 
 
 
55f563b
e86a765
 
 
 
b942456
e86a765
 
 
2741d7d
 
 
b942456
 
 
 
 
 
 
55f563b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e86a765
b942456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e86a765
55f563b
 
 
 
 
 
 
 
 
 
b942456
 
 
 
 
 
 
 
55f563b
e86a765
2741d7d
55f563b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b942456
55f563b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e86a765
 
55f563b
e86a765
b942456
55f563b
e86a765
 
 
b942456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd29f11
b942456
 
 
55f563b
e86a765
55f563b
e86a765
55f563b
 
 
 
e86a765
55f563b
 
 
 
e86a765
55f563b
 
 
 
 
e86a765
 
c0f944a
e86a765
b942456
55f563b
e86a765
 
b942456
55f563b
 
 
b942456
 
55f563b
 
 
 
 
 
 
 
 
 
 
b942456
55f563b
 
b942456
e86a765
55f563b
 
 
 
e86a765
b942456
 
 
2741d7d
55f563b
 
 
 
 
 
 
 
 
 
 
 
 
 
b942456
 
55f563b
 
b942456
55f563b
 
 
b942456
55f563b
b942456
2741d7d
cc33eaf
2741d7d
b8a0d2d
91d2c01
55f563b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
    Qwen2VLForConditionalGeneration,
    AutoProcessor,
)
from transformers.image_utils import load_image
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler

# Additional imports for new TTS
from snac import SNAC
from huggingface_hub import snapshot_download
from dotenv import load_dotenv
load_dotenv()

# ---------------------------
# Set up device
# ---------------------------
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
tts_device = "cuda" if torch.cuda.is_available() else "cpu"  # for SNAC and Orpheus TTS

# ---------------------------
# Load DeepHermes Llama (chat/LLM) model
# ---------------------------
hermes_model_id = "prithivMLmods/DeepHermes-3-Llama-3-3B-Preview-abliterated"
hermes_llm_tokenizer = AutoTokenizer.from_pretrained(hermes_model_id)
hermes_llm_model = AutoModelForCausalLM.from_pretrained(
    hermes_model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
hermes_llm_model.eval()

# ---------------------------
# Load Qwen2-VL processor and model for multimodal tasks
# ---------------------------
MODEL_ID_QWEN = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" 
# (If needed, you can pass extra arguments such as a size dict here if required.)
processor = AutoProcessor.from_pretrained(MODEL_ID_QWEN, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID_QWEN,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

# ---------------------------
# Load Orpheus TTS model and SNAC for TTS synthesis
# ---------------------------
print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(tts_device)

tts_model_name = "canopylabs/orpheus-3b-0.1-ft"
# Download only model config and safetensors
snapshot_download(
    repo_id=tts_model_name,
    allow_patterns=[
        "config.json",
        "*.safetensors",
        "model.safetensors.index.json",
    ],
    ignore_patterns=[
        "optimizer.pt",
        "pytorch_model.bin",
        "training_args.bin",
        "scheduler.pt",
        "tokenizer.json",
        "tokenizer_config.json",
        "special_tokens_map.json",
        "vocab.json",
        "merges.txt",
        "tokenizer.*"
    ]
)
orpheus_tts_model = AutoModelForCausalLM.from_pretrained(tts_model_name, torch_dtype=torch.bfloat16)
orpheus_tts_model.to(tts_device)
orpheus_tts_tokenizer = AutoTokenizer.from_pretrained(tts_model_name)
print(f"Orpheus TTS model loaded to {tts_device}")

# ---------------------------
# Some global parameters for chat and image generation
# ---------------------------
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

# ---------------------------
# Stable Diffusion XL setup
# ---------------------------
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH")  # SDXL Model repository path via env variable
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))  # For batched image generation

sd_pipe = StableDiffusionXLPipeline.from_pretrained(
    MODEL_ID_SD,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    use_safetensors=True,
    add_watermarker=False,
).to(device)
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)

if torch.cuda.is_available():
    sd_pipe.text_encoder = sd_pipe.text_encoder.half()
if USE_TORCH_COMPILE:
    sd_pipe.compile()
if ENABLE_CPU_OFFLOAD:
    sd_pipe.enable_model_cpu_offload()

MAX_SEED = np.iinfo(np.int32).max

# ---------------------------
# Utility functions
# ---------------------------
def save_image(img: Image.Image) -> str:
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def progress_bar_html(label: str) -> str:
    return f'''
<div style="display: flex; align-items: center;">
    <span style="margin-right: 10px; font-size: 14px;">{label}</span>
    <div style="width: 110px; height: 5px; background-color: #FFF0F5; border-radius: 2px; overflow: hidden;">
        <div style="width: 100%; height: 100%; background-color: #FF69B4; animation: loading 1.5s linear infinite;"></div>
    </div>
</div>
<style>
@keyframes loading {{
    0% {{ transform: translateX(-100%); }}
    100% {{ transform: translateX(100%); }}
}}
</style>
    '''

def downsample_video(video_path):
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

def clean_chat_history(chat_history):
    cleaned = []
    for msg in chat_history:
        if isinstance(msg, dict) and isinstance(msg.get("content"), str):
            cleaned.append(msg)
    return cleaned

@spaces.GPU(duration=60, enable_queue=True)
def generate_image_fn(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 1,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    num_inference_steps: int = 25,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True,
    num_images: int = 1,
    progress=gr.Progress(track_tqdm=True),
):
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device=device).manual_seed(seed)
    options = {
        "prompt": [prompt] * num_images,
        "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
    }
    if use_resolution_binning:
        options["use_resolution_binning"] = True
    images = []
    for i in range(0, num_images, BATCH_SIZE):
        batch_options = options.copy()
        batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
        if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
            batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
        if device.type == "cuda":
            with torch.autocast("cuda", dtype=torch.float16):
                outputs = sd_pipe(**batch_options)
        else:
            outputs = sd_pipe(**batch_options)
        images.extend(outputs.images)
    image_paths = [save_image(img) for img in images]
    return image_paths, seed

# ---------------------------
# New TTS functions (SNAC/Orpheus pipeline)
# ---------------------------
def process_prompt(prompt, voice, tokenizer, device):
    prompt = f"{voice}: {prompt}"
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids
    start_token = torch.tensor([[128259]], dtype=torch.int64)  # Start of human
    end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)  # End markers
    modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
    attention_mask = torch.ones_like(modified_input_ids)
    return modified_input_ids.to(device), attention_mask.to(device)

def parse_output(generated_ids):
    token_to_find = 128257
    token_to_remove = 128258
    token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
    if len(token_indices[1]) > 0:
        last_occurrence_idx = token_indices[1][-1].item()
        cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
    else:
        cropped_tensor = generated_ids
    processed_rows = []
    for row in cropped_tensor:
        masked_row = row[row != token_to_remove]
        processed_rows.append(masked_row)
    code_lists = []
    for row in processed_rows:
        row_length = row.size(0)
        new_length = (row_length // 7) * 7
        trimmed_row = row[:new_length]
        trimmed_row = [t - 128266 for t in trimmed_row]
        code_lists.append(trimmed_row)
    return code_lists[0]

def redistribute_codes(code_list, snac_model):
    device = next(snac_model.parameters()).device
    layer_1 = []
    layer_2 = []
    layer_3 = []
    for i in range((len(code_list)+1)//7):
        layer_1.append(code_list[7*i])
        layer_2.append(code_list[7*i+1]-4096)
        layer_3.append(code_list[7*i+2]-(2*4096))
        layer_3.append(code_list[7*i+3]-(3*4096))
        layer_2.append(code_list[7*i+4]-(4*4096))
        layer_3.append(code_list[7*i+5]-(5*4096))
        layer_3.append(code_list[7*i+6]-(6*4096))
    codes = [
        torch.tensor(layer_1, device=device).unsqueeze(0),
        torch.tensor(layer_2, device=device).unsqueeze(0),
        torch.tensor(layer_3, device=device).unsqueeze(0)
    ]
    audio_hat = snac_model.decode(codes)
    return audio_hat.detach().squeeze().cpu().numpy()

@spaces.GPU()
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
    if not text.strip():
        return None
    try:
        progress(0.1, "Processing text...")
        input_ids, attention_mask = process_prompt(text, voice, orpheus_tts_tokenizer, tts_device)
        progress(0.3, "Generating speech tokens...")
        with torch.no_grad():
            generated_ids = orpheus_tts_model.generate(
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_new_tokens=max_new_tokens,
                do_sample=True,
                temperature=temperature,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                num_return_sequences=1,
                eos_token_id=128258,
            )
        progress(0.6, "Processing speech tokens...")
        code_list = parse_output(generated_ids)
        progress(0.8, "Converting to audio...")
        audio_samples = redistribute_codes(code_list, snac_model)
        return (24000, audio_samples)
    except Exception as e:
        print(f"Error generating speech: {e}")
        return None

# ---------------------------
# Main generate function for the chat interface
# ---------------------------
@spaces.GPU
def generate(
    input_dict: dict,
    chat_history: list[dict],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
):
    """
    Generates chatbot responses with support for multimodal input, image generation,
    TTS, and LLM-augmented TTS.
    
    Trigger commands:
      - "@image": generate an image.
      - "@video-infer": process video.
      - "@<voice>-tts": directly convert text to speech.
      - "@<voice>-llm": infer with the DeepHermes Llama model then convert to speech.
    """
    text = input_dict["text"]
    files = input_dict.get("files", [])
    lower_text = text.strip().lower()

    # Branch for image generation.
    if lower_text.startswith("@image"):
        prompt = text[len("@image"):].strip()
        yield progress_bar_html("Generating Image")
        image_paths, used_seed = generate_image_fn(
            prompt=prompt,
            negative_prompt="",
            use_negative_prompt=False,
            seed=1,
            width=1024,
            height=1024,
            guidance_scale=3,
            num_inference_steps=25,
            randomize_seed=True,
            use_resolution_binning=True,
            num_images=1,
        )
        yield gr.Image(image_paths[0])
        return

    # Branch for video processing.
    if lower_text.startswith("@video-infer"):
        prompt = text[len("@video-infer"):].strip()
        if files:
            video_path = files[0]
            frames = downsample_video(video_path)
            messages = [
                {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
                {"role": "user", "content": [{"type": "text", "text": prompt}]}
            ]
            for frame in frames:
                image, timestamp = frame
                image_path = f"video_frame_{uuid.uuid4().hex}.png"
                image.save(image_path)
                messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
                messages[1]["content"].append({"type": "image", "url": image_path})
        else:
            messages = [
                {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
                {"role": "user", "content": [{"type": "text", "text": prompt}]}
            ]
        inputs = processor.apply_chat_template(
            messages, tokenize=True, add_generation_prompt=True, return_dict=True, return_tensors="pt"
        ).to("cuda")
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            **inputs,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "temperature": temperature,
            "top_p": top_p,
            "top_k": top_k,
            "repetition_penalty": repetition_penalty,
        }
        thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        yield progress_bar_html("Processing video with Qwen2VL")
        for new_text in streamer:
            buffer += new_text.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
        return

    # Define TTS and LLM tag mappings.
    tts_tags = {"@tara-tts": "tara", "@dan-tts": "dan", "@josh-tts": "josh", "@emma-tts": "emma"}
    llm_tags = {"@tara-llm": "tara", "@dan-llm": "dan", "@josh-llm": "josh", "@emma-llm": "emma"}

    # Branch for direct TTS (no LLM inference).
    for tag, voice in tts_tags.items():
        if lower_text.startswith(tag):
            text = text[len(tag):].strip()
            # Directly generate speech from the provided text.
            audio_output = generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens)
            yield gr.Audio(audio_output, autoplay=True)
            return

    # Branch for LLM-augmented TTS.
    for tag, voice in llm_tags.items():
        if lower_text.startswith(tag):
            text = text[len(tag):].strip()
            conversation = [{"role": "user", "content": text}]
            input_ids = hermes_llm_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
            if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
                input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
            input_ids = input_ids.to(hermes_llm_model.device)
            streamer = TextIteratorStreamer(hermes_llm_tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
            generation_kwargs = {
                "input_ids": input_ids,
                "streamer": streamer,
                "max_new_tokens": max_new_tokens,
                "do_sample": True,
                "top_p": top_p,
                "top_k": 50,
                "temperature": temperature,
                "num_beams": 1,
                "repetition_penalty": repetition_penalty,
            }
            t = Thread(target=hermes_llm_model.generate, kwargs=generation_kwargs)
            t.start()
            outputs = []
            for new_text in streamer:
                outputs.append(new_text)
            final_response = "".join(outputs)
            # Convert LLM response to speech.
            audio_output = generate_speech(final_response, voice, temperature, top_p, repetition_penalty, max_new_tokens)
            yield gr.Audio(audio_output, autoplay=True)
            return

    # Default branch for regular chat (text and multimodal without TTS).
    conversation = clean_chat_history(chat_history)
    conversation.append({"role": "user", "content": text})
    if files:
        if len(files) > 1:
            images = [load_image(image) for image in files]
        elif len(files) == 1:
            images = [load_image(files[0])]
        else:
            images = []
        messages = [{
            "role": "user",
            "content": [
                *[{"type": "image", "image": image} for image in images],
                {"type": "text", "text": text},
            ]
        }]
        prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(text=[prompt_full], images=images, return_tensors="pt", padding=True).to("cuda")
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
        thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        yield progress_bar_html("Processing Qwen2VL")
        for new_text in streamer:
            buffer += new_text.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
    else:
        input_ids = hermes_llm_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
        if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
            input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
            gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
        input_ids = input_ids.to(hermes_llm_model.device)
        streamer = TextIteratorStreamer(hermes_llm_tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            "input_ids": input_ids,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "top_p": top_p,
            "top_k": top_k,
            "temperature": temperature,
            "num_beams": 1,
            "repetition_penalty": repetition_penalty,
        }
        t = Thread(target=hermes_llm_model.generate, kwargs=generation_kwargs)
        t.start()
        outputs = []
        yield progress_bar_html("Processing with DeepHermes LLM")
        for new_text in streamer:
            outputs.append(new_text)
            yield "".join(outputs)
        final_response = "".join(outputs)
        yield final_response

# ---------------------------
# Gradio Interface
# ---------------------------
demo = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
        gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
        gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
        gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
        gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
    ],
    examples=[
        [{"text": "@video-infer Describe the Ad", "files": ["examples/coca.mp4"]}],
        [{"text": "@video-infer Summarize the event in video", "files": ["examples/sky.mp4"]}],
        [{"text": "@video-infer Describe the video", "files": ["examples/Missing.mp4"]}],
        ["@image Chocolate dripping from a donut"],
        ["Python Program for Array Rotation"],
        ["@tara-tts Who is Nikola Tesla, and why did he die?"],
        ["@emma-llm Explain the causes of rainbows"],
        [{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
        [{"text": "summarize the letter", "files": ["examples/1.png"]}],
        ["@josh-tts What causes rainbows to form?"],
    ],
    cache_examples=False,
    type="messages",
    description="# **Llama Edge** \n`Use @video-infer, @image, @<voice>-tts, or @<voice>-llm triggers`",
    fill_height=True,
    textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder="‎ Use @tara-tts/@dan-tts for direct TTS or @tara-llm/@dan-llm for LLM+TTS, etc."),
    stop_btn="Stop Generation",
    multimodal=True,
)

if __name__ == "__main__":
    demo.queue(max_size=20).launch(share=True)