Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,957 Bytes
55f563b e86a765 55f563b e86a765 55f563b e86a765 55f563b b942456 55f563b b942456 55f563b b942456 55f563b b942456 55f563b b942456 55f563b b942456 3743402 b942456 55f563b b942456 55f563b e86a765 b942456 6d1a1b7 b942456 2741d7d b942456 a5607ef 55f563b 2741d7d 55f563b b942456 55f563b e86a765 2741d7d 55f563b 2741d7d 55f563b 2741d7d 55f563b e86a765 b942456 e86a765 2741d7d b942456 55f563b e86a765 b942456 e86a765 55f563b b942456 55f563b e86a765 2741d7d 55f563b b942456 55f563b e86a765 55f563b e86a765 b942456 55f563b e86a765 b942456 bd29f11 b942456 55f563b e86a765 55f563b e86a765 55f563b e86a765 55f563b e86a765 55f563b e86a765 c0f944a e86a765 b942456 55f563b e86a765 b942456 55f563b b942456 55f563b b942456 55f563b b942456 e86a765 55f563b e86a765 b942456 2741d7d 55f563b 22bb7a7 f014533 a18fa73 f014533 a18fa73 f014533 22bb7a7 55f563b 22bb7a7 55f563b edb8f1c 55f563b b942456 2741d7d cc33eaf 2741d7d b8a0d2d 91d2c01 55f563b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
Qwen2VLForConditionalGeneration,
AutoProcessor,
)
from transformers.image_utils import load_image
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
# Additional imports for new TTS
from snac import SNAC
from huggingface_hub import snapshot_download
from dotenv import load_dotenv
load_dotenv()
# Set up device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
tts_device = "cuda" if torch.cuda.is_available() else "cpu" # for SNAC and Orpheus TTS
# Load DeepHermes Llama (chat/LLM) model
hermes_model_id = "prithivMLmods/DeepHermes-3-Llama-3-3B-Preview-abliterated"
hermes_llm_tokenizer = AutoTokenizer.from_pretrained(hermes_model_id)
hermes_llm_model = AutoModelForCausalLM.from_pretrained(
hermes_model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
hermes_llm_model.eval()
# Load Qwen2-VL processor and model for multimodal tasks
MODEL_ID_QWEN = "prithivMLmods/Qwen2-VL-OCR2-2B-Instruct"
# (If needed, you can pass extra arguments such as a size dict here if required.)
processor = AutoProcessor.from_pretrained(MODEL_ID_QWEN, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID_QWEN,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
# Load Orpheus TTS model and SNAC for TTS synthesis
print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(tts_device)
tts_model_name = "canopylabs/orpheus-3b-0.1-ft"
# Download only model config and safetensors
snapshot_download(
repo_id=tts_model_name,
allow_patterns=[
"config.json",
"*.safetensors",
"model.safetensors.index.json",
],
ignore_patterns=[
"optimizer.pt",
"pytorch_model.bin",
"training_args.bin",
"scheduler.pt",
"tokenizer.json",
"tokenizer_config.json",
"special_tokens_map.json",
"vocab.json",
"merges.txt",
"tokenizer.*"
]
)
orpheus_tts_model = AutoModelForCausalLM.from_pretrained(tts_model_name, torch_dtype=torch.bfloat16)
orpheus_tts_model.to(tts_device)
orpheus_tts_tokenizer = AutoTokenizer.from_pretrained(tts_model_name)
print(f"Orpheus TTS model loaded to {tts_device}")
# Some global parameters for chat and image generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
# Stable Diffusion XL setup
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") #SG161222/RealVisXL_V5.0_Lightning
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # For batched image generation
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
MODEL_ID_SD,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
use_safetensors=True,
add_watermarker=False,
).to(device)
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
if torch.cuda.is_available():
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
if USE_TORCH_COMPILE:
sd_pipe.compile()
if ENABLE_CPU_OFFLOAD:
sd_pipe.enable_model_cpu_offload()
MAX_SEED = np.iinfo(np.int32).max
# Utility functions
def save_image(img: Image.Image) -> str:
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def progress_bar_html(label: str) -> str:
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #FFF0F5; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #FF69B4; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
def downsample_video(video_path):
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
def clean_chat_history(chat_history):
cleaned = []
for msg in chat_history:
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
cleaned.append(msg)
return cleaned
@spaces.GPU(duration=60, enable_queue=True)
def generate_image_fn(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 1,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
num_inference_steps: int = 25,
randomize_seed: bool = False,
use_resolution_binning: bool = True,
num_images: int = 1,
progress=gr.Progress(track_tqdm=True),
):
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(device=device).manual_seed(seed)
options = {
"prompt": [prompt] * num_images,
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "pil",
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
for i in range(0, num_images, BATCH_SIZE):
batch_options = options.copy()
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
if device.type == "cuda":
with torch.autocast("cuda", dtype=torch.float16):
outputs = sd_pipe(**batch_options)
else:
outputs = sd_pipe(**batch_options)
images.extend(outputs.images)
image_paths = [save_image(img) for img in images]
return image_paths, seed
# New TTS functions (SNAC/Orpheus pipeline)
def process_prompt(prompt, voice, tokenizer, device):
prompt = f"{voice}: {prompt}"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End markers
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
attention_mask = torch.ones_like(modified_input_ids)
return modified_input_ids.to(device), attention_mask.to(device)
def parse_output(generated_ids):
token_to_find = 128257
token_to_remove = 128258
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
else:
cropped_tensor = generated_ids
processed_rows = []
for row in cropped_tensor:
masked_row = row[row != token_to_remove]
processed_rows.append(masked_row)
code_lists = []
for row in processed_rows:
row_length = row.size(0)
new_length = (row_length // 7) * 7
trimmed_row = row[:new_length]
trimmed_row = [t - 128266 for t in trimmed_row]
code_lists.append(trimmed_row)
return code_lists[0]
def redistribute_codes(code_list, snac_model):
device = next(snac_model.parameters()).device
layer_1 = []
layer_2 = []
layer_3 = []
for i in range((len(code_list)+1)//7):
layer_1.append(code_list[7*i])
layer_2.append(code_list[7*i+1]-4096)
layer_3.append(code_list[7*i+2]-(2*4096))
layer_3.append(code_list[7*i+3]-(3*4096))
layer_2.append(code_list[7*i+4]-(4*4096))
layer_3.append(code_list[7*i+5]-(5*4096))
layer_3.append(code_list[7*i+6]-(6*4096))
codes = [
torch.tensor(layer_1, device=device).unsqueeze(0),
torch.tensor(layer_2, device=device).unsqueeze(0),
torch.tensor(layer_3, device=device).unsqueeze(0)
]
audio_hat = snac_model.decode(codes)
return audio_hat.detach().squeeze().cpu().numpy()
@spaces.GPU()
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
if not text.strip():
return None
try:
progress(0.1, "Processing text...")
input_ids, attention_mask = process_prompt(text, voice, orpheus_tts_tokenizer, tts_device)
progress(0.3, "Generating speech tokens...")
with torch.no_grad():
generated_ids = orpheus_tts_model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
num_return_sequences=1,
eos_token_id=128258,
)
progress(0.6, "Processing speech tokens...")
code_list = parse_output(generated_ids)
progress(0.8, "Converting to audio...")
audio_samples = redistribute_codes(code_list, snac_model)
return (24000, audio_samples)
except Exception as e:
print(f"Error generating speech: {e}")
return None
# Main generate function for the chat interface
@spaces.GPU
def generate(
input_dict: dict,
chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
):
"""
Generates chatbot responses with support for multimodal input, image generation,
TTS, and LLM-augmented TTS.
Trigger commands:
- "@image": generate an image.
- "@video-infer": process video.
- "@<voice>-tts": directly convert text to speech.
- "@<voice>-llm": infer with the DeepHermes Llama model then convert to speech.
"""
text = input_dict["text"]
files = input_dict.get("files", [])
lower_text = text.strip().lower()
# Branch for image generation.
if lower_text.startswith("@image"):
prompt = text[len("@image"):].strip()
yield progress_bar_html("Generating Image")
image_paths, used_seed = generate_image_fn(
prompt=prompt,
negative_prompt="",
use_negative_prompt=False,
seed=1,
width=1024,
height=1024,
guidance_scale=3,
num_inference_steps=25,
randomize_seed=True,
use_resolution_binning=True,
num_images=1,
)
yield gr.Image(image_paths[0])
return
# Branch for video processing.
if lower_text.startswith("@video-infer"):
prompt = text[len("@video-infer"):].strip()
if files:
video_path = files[0]
frames = downsample_video(video_path)
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": prompt}]}
]
for frame in frames:
image, timestamp = frame
image_path = f"video_frame_{uuid.uuid4().hex}.png"
image.save(image_path)
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[1]["content"].append({"type": "image", "url": image_path})
else:
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": prompt}]}
]
inputs = processor.apply_chat_template(
messages, tokenize=True, add_generation_prompt=True, return_dict=True, return_tensors="pt"
).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing video with Qwen2VL")
for new_text in streamer:
buffer += new_text.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
return
# Define TTS and LLM tag mappings.
tts_tags = {"@tara-tts": "tara", "@dan-tts": "dan", "@josh-tts": "josh", "@emma-tts": "emma"}
llm_tags = {"@tara-llm": "tara", "@dan-llm": "dan", "@josh-llm": "josh", "@emma-llm": "emma"}
# Branch for direct TTS (no LLM inference).
for tag, voice in tts_tags.items():
if lower_text.startswith(tag):
text = text[len(tag):].strip()
# Directly generate speech from the provided text.
audio_output = generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens)
yield gr.Audio(audio_output, autoplay=True)
return
# Branch for LLM-augmented TTS.
for tag, voice in llm_tags.items():
if lower_text.startswith(tag):
text = text[len(tag):].strip()
conversation = [{"role": "user", "content": text}]
input_ids = hermes_llm_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
input_ids = input_ids.to(hermes_llm_model.device)
streamer = TextIteratorStreamer(hermes_llm_tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"top_p": top_p,
"top_k": 50,
"temperature": temperature,
"num_beams": 1,
"repetition_penalty": repetition_penalty,
}
t = Thread(target=hermes_llm_model.generate, kwargs=generation_kwargs)
t.start()
outputs = []
for new_text in streamer:
outputs.append(new_text)
final_response = "".join(outputs)
# Convert LLM response to speech.
audio_output = generate_speech(final_response, voice, temperature, top_p, repetition_penalty, max_new_tokens)
yield gr.Audio(audio_output, autoplay=True)
return
# Default branch for regular chat (text and multimodal without TTS).
conversation = clean_chat_history(chat_history)
conversation.append({"role": "user", "content": text})
if files:
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt_full], images=images, return_tensors="pt", padding=True).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing Qwen2VL")
for new_text in streamer:
buffer += new_text.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
else:
input_ids = hermes_llm_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(hermes_llm_model.device)
streamer = TextIteratorStreamer(hermes_llm_tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"num_beams": 1,
"repetition_penalty": repetition_penalty,
}
t = Thread(target=hermes_llm_model.generate, kwargs=generation_kwargs)
t.start()
outputs = []
yield progress_bar_html("Processing with DeepHermes LLM")
for new_text in streamer:
outputs.append(new_text)
yield "".join(outputs)
final_response = "".join(outputs)
yield final_response
# Gradio Interface
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
examples=[
["@josh-tts Hey! I’m Josh, [gasp] and wow, did I just surprise you with my realistic voice?"],
["@dan-llm Explain the General Relativity theorem in short"],
["@emma-tts Hey, I’m Emma, [sigh] and yes, I can talk just like a person… even when I’m tired."],
["@josh-llm What causes rainbows to form?"],
["@tara-tts Hey there, my name is Tara, [laugh] and I’m a speech generation model that can sound just like you!"],
["@dan-tts Yo, I’m Dan, [groan] and yes, I can even sound annoyed if I have to."],
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
["Write python program for array rotation"],
["@tara-llm Who is Nikola Tesla, and why did he die?"],
["@emma-llm Explain the causes of rainbows"],
["@image Chocolate dripping from a donut"],
[{"text": "@video-infer Summarize the event in video", "files": ["examples/sky.mp4"]}],
[{"text": "@video-infer Describe the video", "files": ["examples/Missing.mp4"]}],
],
cache_examples=False,
type="messages",
description="# **Orpheus Edge🧤** `voice: tara, dan, emma, josh` \n `emotion: <laugh>, <chuckle>, <sigh>, <cough>, <sniffle>, <groan>, <yawn>, <gasp>. Use @video-infer, @image, orpheus: @<voice>-tts, or @<voice>-llm triggers llm response`",
fill_height=True,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder=" Use @tara-tts/@dan-tts for direct TTS or @tara-llm/@dan-llm for LLM+TTS, etc."),
stop_btn="Stop Generation",
multimodal=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True) |