Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,765 Bytes
ed275c9 3f6a788 5d63d59 ed275c9 5d63d59 fc95e60 3f6a788 ed275c9 3f6a788 91cda81 ed275c9 3f6a788 ed275c9 9522057 3f6a788 fc95e60 3f6a788 fc95e60 3f6a788 5d63d59 fc95e60 3f6a788 5d63d59 3f6a788 5d63d59 fc95e60 5633a75 fe53594 ed275c9 3f6a788 ed275c9 3f6a788 ed275c9 3f6a788 ed275c9 5d63d59 ed275c9 0de5083 5d63d59 ed275c9 3f6a788 5d63d59 3f6a788 615c76a 7fef2b6 8b9fc4b 5d63d59 9522057 91cda81 3f6a788 91cda81 9522057 3f6a788 91cda81 fc95e60 91cda81 fc95e60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import gradio as gr
from transformers import (
Qwen2VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
AutoModelForImageTextToText,
)
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
from PIL import Image
import requests
from io import BytesIO
# -------------------------
# Qwen2-VL Model for OCR-based tasks
# -------------------------
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
QV_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
# -------------------------
# Aya-Vision Model for image-text tasks (@aya-vision)
# -------------------------
AYA_MODEL_ID = "CohereForAI/aya-vision-8b"
aya_processor = AutoProcessor.from_pretrained(AYA_MODEL_ID)
aya_model = AutoModelForImageTextToText.from_pretrained(
AYA_MODEL_ID, device_map="auto", torch_dtype=torch.float16
)
def aya_vision_chat(image, text_prompt):
# If image is provided as a URL, load it via requests.
if isinstance(image, str):
response = requests.get(image)
image = Image.open(BytesIO(response.content))
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text_prompt},
],
}]
inputs = aya_processor.apply_chat_template(
messages,
padding=True,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(aya_model.device)
gen_tokens = aya_model.generate(
**inputs, max_new_tokens=300, do_sample=True, temperature=0.3
)
# Decode only the newly generated tokens.
response_text = aya_processor.tokenizer.decode(
gen_tokens[0][inputs.input_ids.shape[1]:],
skip_special_tokens=True
)
return response_text
@spaces.GPU
def model_inference(input_dict, history):
text = input_dict["text"].strip()
files = input_dict.get("files", [])
if text.lower().startswith("@aya-vision"):
# Remove the command prefix and trim the prompt.
text_prompt = text[len("@aya-vision"):].strip()
if not files:
yield "Error: Please provide an image for the @aya-vision feature."
return
else:
# For simplicity, use the first provided image.
image = load_image(files[0])
yield "Processing with Aya-Vision ββββββββββ 69%"
response_text = aya_vision_chat(image, text_prompt)
yield response_text
return
# Load images if provided.
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
# Validate input: require both text and (optionally) image(s).
if text == "" and not images:
yield "Error: Please input a query and optionally image(s)."
return
if text == "" and images:
yield "Error: Please input a text query along with the image(s)."
return
# Prepare messages for the Qwen2-VL model.
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
],
}]
prompt = qwen_processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
inputs = qwen_processor(
text=[prompt],
images=images if images else None,
return_tensors="pt",
padding=True,
).to("cuda")
# Set up a streamer for real-time output.
streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
# Start generation in a separate thread.
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield "Thinking..."
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
# -------------------------
# Example inputs for the combined interface
# -------------------------
examples = [
[{"text": "@aya-vision Extract JSON from the image", "files": ["example_images/document.jpg"]}],
[{"text": "Summarize the letter", "files": ["examples/1.png"]}],
[{"text": "Describe the photo", "files": ["examples/3.png"]}],
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
[{"text": "Summarize the full image in detail", "files": ["examples/2.jpg"]}],
[{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}],
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}],
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
]
# Build the Gradio ChatInterface.
demo = gr.ChatInterface(
fn=model_inference,
description="# **Multimodal OCR with @aya-vision Feature**",
examples=examples,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False,
)
demo.launch(debug=True) |