File size: 6,278 Bytes
ed275c9
ebca0ae
ed275c9
5d63d59
ed275c9
5d63d59
 
ebca0ae
 
 
3331201
ed275c9
5abbaf4
ebca0ae
9522057
91cda81
9522057
91cda81
 
 
ed275c9
ebca0ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99eb8ee
 
 
 
 
 
 
 
 
 
 
 
ed275c9
9522057
5d63d59
 
 
ebca0ae
 
 
 
 
 
 
 
5633a75
ebca0ae
 
 
 
 
 
 
5d63d59
 
ebca0ae
5633a75
5d63d59
ebca0ae
5633a75
5d63d59
 
 
ed275c9
 
 
 
ebca0ae
5d63d59
ed275c9
 
 
 
5d63d59
 
3331201
99eb8ee
 
3331201
 
 
 
 
ed275c9
5d63d59
3331201
 
5633a75
fe53594
ed275c9
 
5d63d59
 
ed275c9
 
5d63d59
ed275c9
 
 
5d63d59
ed275c9
5d63d59
ed275c9
 
0de5083
 
5d63d59
ed275c9
 
5d63d59
 
80b3d4a
3cae58c
615c76a
 
7fef2b6
8b9fc4b
5d63d59
 
 
 
 
9522057
91cda81
 
9522057
 
91cda81
5633a75
91cda81
 
 
 
 
fe53594
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import gradio as gr
import spaces
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
from PIL import Image
import uuid
import io
import os

# Fine-tuned for OCR-based tasks from Qwen's [ Qwen/Qwen2-VL-2B-Instruct ]
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

# Supported media extensions
image_extensions = Image.registered_extensions()
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")

def identify_and_save_blob(blob_path):
    """Identifies if the blob is an image or video and saves it accordingly."""
    try:
        with open(blob_path, 'rb') as file:
            blob_content = file.read()
            
            # Try to identify if it's an image
            try:
                Image.open(io.BytesIO(blob_content)).verify()  # Check if it's a valid image
                extension = ".png"  # Default to PNG for saving
                media_type = "image"
            except (IOError, SyntaxError):
                # If it's not a valid image, assume it's a video
                extension = ".mp4"  # Default to MP4 for saving
                media_type = "video"
            
            # Create a unique filename
            filename = f"temp_{uuid.uuid4()}_media{extension}"
            with open(filename, "wb") as f:
                f.write(blob_content)
                
            return filename, media_type
            
    except FileNotFoundError:
        raise ValueError(f"The file {blob_path} was not found.")
    except Exception as e:
        raise ValueError(f"An error occurred while processing the file: {e}")

def process_vision_info(messages):
    """Processes vision inputs (images and videos) from messages."""
    image_inputs = []
    video_inputs = []
    for message in messages:
        for content in message["content"]:
            if content["type"] == "image":
                image_inputs.append(load_image(content["image"]))
            elif content["type"] == "video":
                video_inputs.append(content["video"])
    return image_inputs, video_inputs

@spaces.GPU
def model_inference(input_dict, history):
    text = input_dict["text"]
    files = input_dict["files"]

    # Process media files (images or videos)
    media_paths = []
    media_types = []
    for file in files:
        if file.endswith(tuple([i for i, f in image_extensions.items()])):
            media_type = "image"
        elif file.endswith(video_extensions):
            media_type = "video"
        else:
            try:
                file, media_type = identify_and_save_blob(file)
            except Exception as e:
                gr.Error(f"Unsupported media type: {e}")
                return
        media_paths.append(file)
        media_types.append(media_type)

    # Validate input
    if text == "" and not media_paths:
        gr.Error("Please input a query and optionally image(s) or video(s).")
        return
    if text == "" and media_paths:
        gr.Error("Please input a text query along with the image(s) or video(s).")
        return

    # Prepare messages for the model
    messages = [
        {
            "role": "user",
            "content": [
                *[{"type": media_type, media_type: media_path} for media_path, media_type in zip(media_paths, media_types)],
                {"type": "text", "text": text},
            ],
        }
    ]

    # Apply chat template and process inputs
    prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    
    # Process vision inputs (images and videos)
    image_inputs, video_inputs = process_vision_info(messages)

    # Ensure video_inputs is not empty
    if not video_inputs:
        video_inputs = None

    inputs = processor(
        text=[prompt],
        images=image_inputs if image_inputs else None,
        videos=video_inputs if video_inputs else None,
        return_tensors="pt",
        padding=True,
    ).to("cuda")

    # Set up streamer for real-time output
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)

    # Start generation in a separate thread
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    # Stream the output
    buffer = ""
    yield "Thinking..."
    for new_text in streamer:
        buffer += new_text
        # Remove <|im_end|> or similar tokens from the output
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer

# Example inputs
examples = [
    [{"text": "Describe the video.", "files": ["examples/demo.mp4"]}],
    [{"text": "Extract JSON from the image", "files": ["example_images/document.jpg"]}],
    [{"text": "summarize the letter", "files": ["examples/1.png"]}],
    [{"text": "Describe the photo", "files": ["examples/3.png"]}],
    [{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
    [{"text": "Summarize the full image in detail", "files": ["examples/2.jpg"]}],
    [{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}],
    [{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}],
    [{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
    [{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
    [{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
]

demo = gr.ChatInterface(
    fn=model_inference,
    description="# **Multimodal OCR**",
    examples=examples,
    textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
    stop_btn="Stop Generation",
    multimodal=True,
    cache_examples=False,
)

demo.launch(debug=True, share=True)