Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,008 Bytes
ed275c9 5d63d59 ed275c9 5d63d59 fc95e60 6401487 92e002a 6401487 92e002a ed275c9 92e002a d2b791d 92e002a 8bf8d90 92e002a 7342b9f 92e002a 7342b9f c8cd2f3 7342b9f 6401487 92e002a 8bf8d90 92e002a 6401487 92e002a 564e537 6401487 92e002a c307af6 3f6a788 91cda81 ed275c9 ce03905 92e002a 6401487 ed275c9 c307af6 8c1f8ea 3f6a788 92e002a c307af6 92e002a c307af6 64f9a07 c307af6 92e002a d2b791d c307af6 5d63d59 c307af6 92e002a c307af6 5633a75 fe53594 ed275c9 c307af6 ed275c9 c307af6 ed275c9 c307af6 ed275c9 8bf8d90 5d63d59 ed275c9 92e002a 5d63d59 c307af6 64f9a07 9522057 91cda81 9522057 ef23e44 91cda81 7342b9f c307af6 7342b9f 91cda81 3b7fae9 91cda81 8bf8d90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import gradio as gr
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
import cv2
import numpy as np
from PIL import Image
from transformers import (
Qwen2VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
)
from transformers import Qwen2_5_VLForConditionalGeneration
# Helper Functions
def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str:
"""
Returns an HTML snippet for a thin animated progress bar with a label.
Colors can be customized; default colors are used for Qwen2VL/Aya‑Vision.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
def downsample_video(video_path):
"""
Downsamples a video file by extracting 10 evenly spaced frames.
Returns a list of tuples (PIL.Image, timestamp).
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
if total_frames <= 0 or fps <= 0:
vidcap.release()
return frames
frame_indices = np.linspace(0, total_frames - 1, 25, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# Model and Processor Setup
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
QV_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
ROLMOCR_MODEL_ID = "reducto/RolmOCR"
rolmocr_processor = AutoProcessor.from_pretrained(ROLMOCR_MODEL_ID, trust_remote_code=True)
rolmocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
ROLMOCR_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda").eval()
# Main Inference Function
@spaces.GPU
def model_inference(input_dict, history, use_rolmocr=False):
text = input_dict["text"].strip()
files = input_dict.get("files", [])
if not text and not files:
yield "Error: Please input a text query or provide files (images or videos)."
return
# Process files: images and videos
image_list = []
for idx, file in enumerate(files):
if file.lower().endswith((".mp4", ".avi", ".mov")):
frames = downsample_video(file)
if not frames:
yield "Error: Could not extract frames from the video."
return
for frame, timestamp in frames:
label = f"Video {idx+1} Frame {timestamp}:"
image_list.append((label, frame))
else:
try:
img = load_image(file)
label = f"Image {idx+1}:"
image_list.append((label, img))
except Exception as e:
yield f"Error loading image: {str(e)}"
return
# Build content list
content = [{"type": "text", "text": text}]
for label, img in image_list:
content.append({"type": "text", "text": label})
content.append({"type": "image", "image": img})
messages = [{"role": "user", "content": content}]
# Select processor and model
processor = rolmocr_processor if use_rolmocr else qwen_processor
model = rolmocr_model if use_rolmocr else qwen_model
model_name = "RolmOCR" if use_rolmocr else "Qwen2VL OCR"
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
all_images = [item["image"] for item in content if item["type"] == "image"]
inputs = processor(
text=[prompt_full],
images=all_images if all_images else None,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html(f"Processing with {model_name}")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
# Gradio Interface
examples = [
[{"text": "OCR the Text in the Image", "files": ["rolm/1.jpeg"]}],
[{"text": "Explain the Ad in Detail", "files": ["examples/videoplayback.mp4"]}],
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
]
demo = gr.ChatInterface(
fn=model_inference,
description="# *Multimodal OCR `@RolmOCR and Default Qwen2VL OCR`*",
examples=examples,
textbox=gr.MultimodalTextbox(
label="Query Input",
file_types=["image", "video"],
file_count="multiple",
placeholder="Input your query and optionally upload image(s) or video(s). Select the model using the checkbox."
),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False,
additional_inputs=[gr.Checkbox(label="Use RolmOCR", value=False, info="Check to use RolmOCR, uncheck to use Qwen2VL OCR")],
)
demo.launch(debug=True, ssr_mode=False) |