Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer | |
from transformers.image_utils import load_image | |
from threading import Thread | |
import time | |
import torch | |
from PIL import Image | |
import uuid | |
import io | |
import os | |
# Fine-tuned for OCR-based tasks from Qwen's [ Qwen/Qwen2-VL-2B-Instruct ] | |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" | |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
MODEL_ID, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to("cuda").eval() | |
# Supported media extensions | |
image_extensions = Image.registered_extensions() | |
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp") | |
def identify_and_save_blob(blob_path): | |
"""Identifies if the blob is an image or video and saves it accordingly.""" | |
try: | |
with open(blob_path, 'rb') as file: | |
blob_content = file.read() | |
# Try to identify if it's an image | |
try: | |
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image | |
extension = ".png" # Default to PNG for saving | |
media_type = "image" | |
except (IOError, SyntaxError): | |
# If it's not a valid image, assume it's a video | |
extension = ".mp4" # Default to MP4 for saving | |
media_type = "video" | |
# Create a unique filename | |
filename = f"temp_{uuid.uuid4()}_media{extension}" | |
with open(filename, "wb") as f: | |
f.write(blob_content) | |
return filename, media_type | |
except FileNotFoundError: | |
raise ValueError(f"The file {blob_path} was not found.") | |
except Exception as e: | |
raise ValueError(f"An error occurred while processing the file: {e}") | |
def process_vision_info(messages): | |
"""Processes vision inputs (images and videos) from messages.""" | |
image_inputs = [] | |
video_inputs = [] | |
for message in messages: | |
for content in message["content"]: | |
if content["type"] == "image": | |
image_inputs.append(load_image(content["image"])) | |
elif content["type"] == "video": | |
video_inputs.append(content["video"]) | |
return image_inputs, video_inputs | |
def model_inference(input_dict, history): | |
text = input_dict["text"] | |
files = input_dict["files"] | |
# Process media files (images or videos) | |
media_paths = [] | |
media_types = [] | |
for file in files: | |
if file.endswith(tuple([i for i, f in image_extensions.items()])): | |
media_type = "image" | |
elif file.endswith(video_extensions): | |
media_type = "video" | |
else: | |
try: | |
file, media_type = identify_and_save_blob(file) | |
except Exception as e: | |
gr.Error(f"Unsupported media type: {e}") | |
return | |
media_paths.append(file) | |
media_types.append(media_type) | |
# Validate input | |
if text == "" and not media_paths: | |
gr.Error("Please input a query and optionally image(s) or video(s).") | |
return | |
if text == "" and media_paths: | |
gr.Error("Please input a text query along with the image(s) or video(s).") | |
return | |
# Prepare messages for the model | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
*[{"type": media_type, media_type: media_path} for media_path, media_type in zip(media_paths, media_types)], | |
{"type": "text", "text": text}, | |
], | |
} | |
] | |
# Apply chat template and process inputs | |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
# Process vision inputs (images and videos) | |
image_inputs, video_inputs = process_vision_info(messages) | |
# Ensure video_inputs is not empty | |
if not video_inputs: | |
video_inputs = None | |
inputs = processor( | |
text=[prompt], | |
images=image_inputs if image_inputs else None, | |
videos=video_inputs if video_inputs else None, | |
return_tensors="pt", | |
padding=True, | |
).to("cuda") | |
# Set up streamer for real-time output | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | |
# Start generation in a separate thread | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
# Stream the output | |
buffer = "" | |
yield "Thinking..." | |
for new_text in streamer: | |
buffer += new_text | |
# Remove <|im_end|> or similar tokens from the output | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer | |
# Example inputs | |
examples = [ | |
[{"text": "Describe the video.", "files": ["examples/demo.mp4"]}], | |
[{"text": "Extract JSON from the image", "files": ["example_images/document.jpg"]}], | |
[{"text": "summarize the letter", "files": ["examples/1.png"]}], | |
[{"text": "Describe the photo", "files": ["examples/3.png"]}], | |
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}], | |
[{"text": "Summarize the full image in detail", "files": ["examples/2.jpg"]}], | |
[{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}], | |
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}], | |
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}], | |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}], | |
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}], | |
] | |
demo = gr.ChatInterface( | |
fn=model_inference, | |
description="# **Multimodal OCR**", | |
examples=examples, | |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"), | |
stop_btn="Stop Generation", | |
multimodal=True, | |
cache_examples=False, | |
) | |
demo.launch(debug=True, share=True) |