Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,876 Bytes
09dd649 466e3e5 09dd649 466e3e5 323e41c 466e3e5 09dd649 466e3e5 a5d07a8 ea33f68 323e41c ea33f68 a5d07a8 ea33f68 a5d07a8 ea33f68 a5d07a8 466e3e5 323e41c 466e3e5 09dd649 466e3e5 09dd649 466e3e5 09dd649 466e3e5 323e41c 466e3e5 323e41c 466e3e5 09dd649 466e3e5 ea33f68 466e3e5 09dd649 466e3e5 09dd649 dec2f93 466e3e5 c9fe6dd 88290c8 09dd649 9a4bcc3 09dd649 78c40b7 323e41c 09dd649 466e3e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import gradio as gr
import cv2
import numpy as np
import time
import torch
import spaces
from threading import Thread
from PIL import Image
from transformers import (
AutoProcessor,
Qwen2_5_VLForConditionalGeneration,
TextIteratorStreamer,
AutoTokenizer,
AutoModelForCausalLM,
)
from transformers.image_utils import load_image
# Progress Bar Helper
def progress_bar_html(label: str) -> str:
"""
Returns an HTML snippet for a thin progress bar with a label.
The progress bar is styled as a dark animated bar.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #9370DB; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #4B0082; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
# Video Downsampling Helper
def downsample_video(video_path):
"""
Downsamples the video to 10 evenly spaced frames.
Each frame is converted to a PIL Image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
if total_frames <= 0 or fps <= 0:
vidcap.release()
return frames
# Sample 10 evenly spaced frames.
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# Qwen2.5-VL Setup (for image and video understanding)
MODEL_ID_VL = "Qwen/Qwen2.5-VL-7B-Instruct" # Alternatively: "Qwen/Qwen2.5-VL-3B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True)
vl_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_VL,
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda").eval()
# Text Generation Setup (Ganymede)
TG_MODEL_ID = "prithivMLmods/Ganymede-Llama-3.3-3B-Preview"
tg_tokenizer = AutoTokenizer.from_pretrained(TG_MODEL_ID)
tg_model = AutoModelForCausalLM.from_pretrained(
TG_MODEL_ID,
device_map="auto",
torch_dtype=torch.bfloat16,
)
tg_model.eval()
@spaces.GPU
def model_inference(input_dict, history):
text = input_dict["text"]
files = input_dict.get("files", [])
# Video inference branch using a tag @video-infer
if text.strip().lower().startswith("@video-infer"):
# Remove the tag from the query.
text = text[len("@video-infer"):].strip()
if not files:
gr.Error("Please upload a video file along with your @video-infer query.")
return
# Assume the first file is a video.
video_path = files[0]
frames = downsample_video(video_path)
if not frames:
gr.Error("Could not process video.")
return
# Build messages: start with the text prompt.
messages = [
{
"role": "user",
"content": [{"type": "text", "text": text}]
}
]
# Append each frame with a timestamp label.
for image, timestamp in frames:
messages[0]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[0]["content"].append({"type": "image", "image": image})
# Collect only the images from the frames.
video_images = [image for image, _ in frames]
# Prepare the prompt.
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt],
images=video_images,
return_tensors="pt",
padding=True,
).to("cuda")
# Set up streaming generation.
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=vl_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing video with Qwen2.5VL Model")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
# If files are provided (e.g. images), use the VL model.
if files:
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
messages = [
{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
],
}
]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt],
images=images,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=vl_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Qwen2.5VL Model")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
if text and not files:
# Prepare input for text generation.
input_ids = tg_tokenizer.encode(text, return_tensors="pt").to("cuda")
streamer = TextIteratorStreamer(tg_tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": 1024,
"do_sample": True,
"temperature": 0.7,
"top_p": 0.9,
}
thread = Thread(target=tg_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing text with Ganymede Model")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
# Fallback error in case neither text nor proper file input is provided.
gr.Error("Please input a query (and optionally images or video for multimodal processing).")
# Gradio Chat Interface Setup
examples = [
[{"text": "Explain the image and highlight the key points.", "files": ["example_images/campeones.jpg"]}],
[{"text": "Tell me a story about a brave knight."}],
[{"text": "@video-infer Explain the content of the Advertisement", "files": ["example_images/videoplayback.mp4"]}],
[{"text": "@video-infer Explain the content of the video in detail", "files": ["example_images/breakfast.mp4"]}],
]
demo = gr.ChatInterface(
fn=model_inference,
description="# **Qwen2.5-VL-7B-Instruct `@video-infer for video understanding`**",
examples=examples,
fill_height=True,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False,
)
if __name__ == "__main__":
demo.launch(debug=True) |