File size: 8,080 Bytes
09dd649
466e3e5
 
 
 
 
ab0c591
466e3e5
 
ab0c591
 
 
 
 
 
 
09dd649
ab0c591
466e3e5
ab0c591
a5d07a8
ea33f68
 
323e41c
ea33f68
a5d07a8
ea33f68
 
 
 
a5d07a8
ea33f68
 
 
 
 
 
 
a5d07a8
 
ab0c591
 
 
323e41c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab0c591
 
 
466e3e5
 
 
 
09dd649
 
 
 
ab0c591
 
 
 
466e3e5
 
 
 
 
 
 
 
ab0c591
 
 
09dd649
 
 
ab0c591
09dd649
ab0c591
323e41c
 
 
ab0c591
323e41c
 
 
 
ab0c591
323e41c
ab0c591
323e41c
 
 
 
 
 
 
 
 
ab0c591
323e41c
 
 
 
 
 
 
 
 
 
466e3e5
323e41c
 
 
 
 
 
 
 
 
ab0c591
466e3e5
ab0c591
466e3e5
 
 
 
ab0c591
 
 
 
 
 
 
466e3e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09dd649
 
ab0c591
 
 
466e3e5
 
ab0c591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09dd649
ab0c591
 
 
09dd649
ab0c591
466e3e5
c9fe6dd
88290c8
09dd649
 
 
 
9a4bcc3
09dd649
78c40b7
323e41c
09dd649
 
 
 
 
466e3e5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import gradio as gr
from transformers import (
    AutoProcessor,
    Qwen2_5_VLForConditionalGeneration,
    TextIteratorStreamer,
    AutoModelForCausalLM,
    AutoTokenizer,
)
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
import cv2
import numpy as np
from PIL import Image

# -----------------------
# Progress Bar Helper
# -----------------------
def progress_bar_html(label: str) -> str:
    """
    Returns an HTML snippet for a thin progress bar with a label.
    The progress bar is styled as a dark animated bar.
    """
    return f'''
<div style="display: flex; align-items: center;">
    <span style="margin-right: 10px; font-size: 14px;">{label}</span>
    <div style="width: 110px; height: 5px; background-color: #9370DB; border-radius: 2px; overflow: hidden;">
        <div style="width: 100%; height: 100%; background-color: #4B0082; animation: loading 1.5s linear infinite;"></div>
    </div>
</div>
<style>
@keyframes loading {{
    0% {{ transform: translateX(-100%); }}
    100% {{ transform: translateX(100%); }}
}}
</style>
    '''

# -----------------------
# Video Processing Helper
# -----------------------
def downsample_video(video_path):
    """
    Downsamples the video to 10 evenly spaced frames.
    Each frame is converted to a PIL Image along with its timestamp.
    """
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    if total_frames <= 0 or fps <= 0:
        vidcap.release()
        return frames
    # Sample 10 evenly spaced frames.
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

# -----------------------
# Qwen2.5-VL Model (Multimodal)
# -----------------------
MODEL_ID_VL = "Qwen/Qwen2.5-VL-7B-Instruct"  # Alternatively: "Qwen/Qwen2.5-VL-3B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True)
vl_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_VL,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16
).to("cuda").eval()

# -----------------------
# Text Generation Setup (DeepHermes)
# -----------------------
TG_MODEL_ID = "prithivMLmods/DeepHermes-3-Llama-3-3B-Preview-abliterated"
tg_tokenizer = AutoTokenizer.from_pretrained(TG_MODEL_ID)
tg_model = AutoModelForCausalLM.from_pretrained(
    TG_MODEL_ID,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
tg_model.eval()

# -----------------------
# Main Inference Function
# -----------------------
@spaces.GPU
def model_inference(input_dict, history):
    text = input_dict["text"]
    files = input_dict["files"]

    # Video inference branch
    if text.strip().lower().startswith("@video-infer"):
        text = text[len("@video-infer"):].strip()
        if not files:
            yield gr.Error("Please upload a video file along with your @video-infer query.")
            return
        video_path = files[0]
        frames = downsample_video(video_path)
        if not frames:
            yield gr.Error("Could not process video.")
            return
        # Build messages starting with the text prompt and then add each frame with its timestamp.
        messages = [
            {
                "role": "user",
                "content": [{"type": "text", "text": text}]
            }
        ]
        for image, timestamp in frames:
            messages[0]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
            messages[0]["content"].append({"type": "image", "image": image})
        # Collect images from the frames.
        video_images = [image for image, _ in frames]
        prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(
            text=[prompt],
            images=video_images,
            return_tensors="pt",
            padding=True,
        ).to("cuda")
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
        thread = Thread(target=vl_model.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        yield progress_bar_html("Processing video with Qwen2.5VL Model")
        for new_text in streamer:
            buffer += new_text
            time.sleep(0.01)
            yield buffer
        return

    # Multimodal branch if images are provided (non-video)
    if files:
        # If more than one file is provided, load them as images.
        if len(files) > 1:
            images = [load_image(image) for image in files]
        elif len(files) == 1:
            images = [load_image(files[0])]
        else:
            images = []

        if text == "":
            yield gr.Error("Please input a text query along with the image(s).")
            return

        messages = [
            {
                "role": "user",
                "content": [
                    *[{"type": "image", "image": image} for image in images],
                    {"type": "text", "text": text},
                ],
            }
        ]
        prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(
            text=[prompt],
            images=images,
            return_tensors="pt",
            padding=True,
        ).to("cuda")
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
        thread = Thread(target=vl_model.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        yield progress_bar_html("Processing with Qwen2.5VL Model")
        for new_text in streamer:
            buffer += new_text
            time.sleep(0.01)
            yield buffer
        return

    # Text-only branch using DeepHermes text generation.
    if text.strip() == "":
        yield gr.Error("Please input a query.")
        return

    input_ids = tg_tokenizer(text, return_tensors="pt").to(tg_model.device)
    streamer = TextIteratorStreamer(tg_tokenizer, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {
        "input_ids": input_ids,
        "streamer": streamer,
        "max_new_tokens": 2048,
        "do_sample": True,
        "top_p": 0.9,
        "top_k": 50,
        "temperature": 0.6,
        "repetition_penalty": 1.2,
    }
    thread = Thread(target=tg_model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    yield progress_bar_html("Processing text with DeepHermes Model")
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer

# -----------------------
# Gradio Chat Interface
# -----------------------
examples = [
    [{"text": "Describe the Image?", "files": ["example_images/document.jpg"]}],
    [{"text": "Tell me a story about a brave knight."}],
    [{"text": "@video-infer Explain the content of the Advertisement", "files": ["example_images/videoplayback.mp4"]}],
    [{"text": "@video-infer Explain the content of the video in detail", "files": ["example_images/breakfast.mp4"]}],
]

demo = gr.ChatInterface(
    fn=model_inference,
    description="# **Qwen2.5-VL-7B-Instruct `@video-infer for video understanding`**",
    examples=examples,
    fill_height=True,
    textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
    stop_btn="Stop Generation",
    multimodal=True,
    cache_examples=False,
)

if __name__ == "__main__":
    demo.launch(debug=True)