Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,080 Bytes
09dd649 466e3e5 ab0c591 466e3e5 ab0c591 09dd649 ab0c591 466e3e5 ab0c591 a5d07a8 ea33f68 323e41c ea33f68 a5d07a8 ea33f68 a5d07a8 ea33f68 a5d07a8 ab0c591 323e41c ab0c591 466e3e5 09dd649 ab0c591 466e3e5 ab0c591 09dd649 ab0c591 09dd649 ab0c591 323e41c ab0c591 323e41c ab0c591 323e41c ab0c591 323e41c ab0c591 323e41c 466e3e5 323e41c ab0c591 466e3e5 ab0c591 466e3e5 ab0c591 466e3e5 09dd649 ab0c591 466e3e5 ab0c591 09dd649 ab0c591 09dd649 ab0c591 466e3e5 c9fe6dd 88290c8 09dd649 9a4bcc3 09dd649 78c40b7 323e41c 09dd649 466e3e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import gradio as gr
from transformers import (
AutoProcessor,
Qwen2_5_VLForConditionalGeneration,
TextIteratorStreamer,
AutoModelForCausalLM,
AutoTokenizer,
)
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
import cv2
import numpy as np
from PIL import Image
# -----------------------
# Progress Bar Helper
# -----------------------
def progress_bar_html(label: str) -> str:
"""
Returns an HTML snippet for a thin progress bar with a label.
The progress bar is styled as a dark animated bar.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #9370DB; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #4B0082; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
# -----------------------
# Video Processing Helper
# -----------------------
def downsample_video(video_path):
"""
Downsamples the video to 10 evenly spaced frames.
Each frame is converted to a PIL Image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
if total_frames <= 0 or fps <= 0:
vidcap.release()
return frames
# Sample 10 evenly spaced frames.
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# -----------------------
# Qwen2.5-VL Model (Multimodal)
# -----------------------
MODEL_ID_VL = "Qwen/Qwen2.5-VL-7B-Instruct" # Alternatively: "Qwen/Qwen2.5-VL-3B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True)
vl_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_VL,
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda").eval()
# -----------------------
# Text Generation Setup (DeepHermes)
# -----------------------
TG_MODEL_ID = "prithivMLmods/DeepHermes-3-Llama-3-3B-Preview-abliterated"
tg_tokenizer = AutoTokenizer.from_pretrained(TG_MODEL_ID)
tg_model = AutoModelForCausalLM.from_pretrained(
TG_MODEL_ID,
device_map="auto",
torch_dtype=torch.bfloat16,
)
tg_model.eval()
# -----------------------
# Main Inference Function
# -----------------------
@spaces.GPU
def model_inference(input_dict, history):
text = input_dict["text"]
files = input_dict["files"]
# Video inference branch
if text.strip().lower().startswith("@video-infer"):
text = text[len("@video-infer"):].strip()
if not files:
yield gr.Error("Please upload a video file along with your @video-infer query.")
return
video_path = files[0]
frames = downsample_video(video_path)
if not frames:
yield gr.Error("Could not process video.")
return
# Build messages starting with the text prompt and then add each frame with its timestamp.
messages = [
{
"role": "user",
"content": [{"type": "text", "text": text}]
}
]
for image, timestamp in frames:
messages[0]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[0]["content"].append({"type": "image", "image": image})
# Collect images from the frames.
video_images = [image for image, _ in frames]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt],
images=video_images,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=vl_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing video with Qwen2.5VL Model")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
# Multimodal branch if images are provided (non-video)
if files:
# If more than one file is provided, load them as images.
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
if text == "":
yield gr.Error("Please input a text query along with the image(s).")
return
messages = [
{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
],
}
]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt],
images=images,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=vl_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Qwen2.5VL Model")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
# Text-only branch using DeepHermes text generation.
if text.strip() == "":
yield gr.Error("Please input a query.")
return
input_ids = tg_tokenizer(text, return_tensors="pt").to(tg_model.device)
streamer = TextIteratorStreamer(tg_tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": 2048,
"do_sample": True,
"top_p": 0.9,
"top_k": 50,
"temperature": 0.6,
"repetition_penalty": 1.2,
}
thread = Thread(target=tg_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing text with DeepHermes Model")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
# -----------------------
# Gradio Chat Interface
# -----------------------
examples = [
[{"text": "Describe the Image?", "files": ["example_images/document.jpg"]}],
[{"text": "Tell me a story about a brave knight."}],
[{"text": "@video-infer Explain the content of the Advertisement", "files": ["example_images/videoplayback.mp4"]}],
[{"text": "@video-infer Explain the content of the video in detail", "files": ["example_images/breakfast.mp4"]}],
]
demo = gr.ChatInterface(
fn=model_inference,
description="# **Qwen2.5-VL-7B-Instruct `@video-infer for video understanding`**",
examples=examples,
fill_height=True,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False,
)
if __name__ == "__main__":
demo.launch(debug=True) |