Spaces:
Sleeping
Sleeping
File size: 5,937 Bytes
a715df3 42d27aa a715df3 42d27aa a715df3 42d27aa a715df3 42d27aa a715df3 42d27aa a715df3 42d27aa a715df3 42d27aa a715df3 42d27aa a715df3 42d27aa a715df3 42d27aa a715df3 42d27aa a715df3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import streamlit as st
import pandas as pd
def divided_differences(x, y):
"""
Calculates the divided differences table for Newton's Divided Difference formula.
Args:
x (list): List of x-values.
y (list): List of y-values corresponding to x-values.
Returns:
pandas.DataFrame: Divided differences table.
"""
n = len(y)
if n == 0:
return pd.DataFrame()
dd_table = pd.DataFrame(index=range(n), columns=range(n))
dd_table[0] = pd.Series(y)
for j in range(1, n):
for i in range(n - j):
dd_table.loc[i, j] = (dd_table.loc[i+1, j-1] - dd_table.loc[i, j-1]) / (float(x[i+j]) - float(x[i]))
return dd_table
def newton_interpolation_steps_latex(x, y, x_interp):
"""
Calculates the interpolated value at x_interp using Newton's Divided Difference formula and provides step-by-step solution in LaTeX.
Args:
x (list): List of x-values.
y (list): List of y-values corresponding to x-values.
x_interp (float): The x-value to interpolate at.
Returns:
tuple: (interpolated_y, dd_table, steps_latex)
interpolated_y (float): The interpolated y-value at x_interp.
dd_table (pandas.DataFrame): The divided differences table.
steps_latex (list of str): List of LaTeX strings describing each step of the calculation.
Returns (None, None, None) if there's an error (e.g., empty input).
"""
n = len(x)
if n == 0 or len(y) != n:
return None, None, None
dd_table_df = divided_differences(x, y)
if dd_table_df.empty:
return None, None, None
dd_table = dd_table_df.values.tolist()
y_interp = dd_table[0][0]
steps_latex = []
# Initial step in LaTeX
steps_latex.append(r"Initial value: $P(x) = f[x_0] = {:.4f}$".format(y_interp))
for i in range(1, n):
term = 1.0
for j in range(i):
term *= (x_interp - float(x[j]))
current_term_value = dd_table[0][i] * term
# Construct divided difference notation in LaTeX: f[x_0, ..., x_i]
dd_notation_latex = r"f[x_0"
for k in range(1, i + 1):
dd_notation_latex += r", x_{" + str(k) + r"}"
dd_notation_latex += r"]"
# Construct polynomial term in LaTeX: (x - x_0)(x - x_1)...(x - x_{i-1})
polynomial_term_latex = ""
for j in range(i):
polynomial_term_latex += r"(x - " + str(x[j]) + r")"
if not polynomial_term_latex:
polynomial_term_latex = "1"
# Step description in LaTeX
step_latex_description = r"Add term {}: ${} \times {} = {:.4f} \times $".format(i, dd_notation_latex, polynomial_term_latex.replace('x', str(x_interp)), dd_table[0][i])
if i > 0:
term_values_latex = r" $\times$ ".join([r"({:.1f} - {})".format(x_interp, val) for val in x[:i]]) # more robust float formatting
step_latex_description += term_values_latex
else:
step_latex_description = r"Initial value: $f[x_0] = {:.4f}$".format(dd_table[0][0]) # Should not happen in loop, but for clarity
step_latex_description += r" = {:.4f}$".format(current_term_value)
steps_latex.append(step_latex_description)
steps_latex.append(r"Current $P(x) = {:.4f}$".format(y_interp + current_term_value)) # Corrected accumulation here
y_interp += current_term_value # Accumulate interpolation value here
return y_interp, dd_table_df, steps_latex
st.title("Newton's Divided Difference Interpolation")
st.write("Enter the x and y values as comma-separated lists, and the x value you want to interpolate.")
x_values_input = st.text_area("Enter x values (comma-separated):", "2000, 2005, 2010, 2015")
y_values_input = st.text_area("Enter y values (comma-separated):", "1000, 1040, 1032, 1025")
x_interpolate = st.number_input("Enter x value to interpolate:", value=2001.0)
if st.button("Calculate Interpolated Value with Steps (LaTeX)"):
try:
x_values_str = x_values_input.strip()
y_values_str = y_values_input.strip()
if not x_values_str or not y_values_str:
st.error("Please enter both x and y values.")
else:
x_values = [val.strip() for val in x_values_str.split(',')]
y_values = [val.strip() for val in y_values_str.split(',')]
if len(x_values) != len(y_values):
st.error("The number of x values and y values must be the same.")
else:
try:
x_values_float = [float(x) for x in x_values]
y_values_float = [float(y) for y in y_values]
if not all(isinstance(x, (int, float)) for x in x_values_float) or not all(isinstance(y, (int, float)) for y in y_values_float):
st.error("Please ensure all x and y values are numbers.")
else:
interpolated_y, dd_table, steps_latex = newton_interpolation_steps_latex(x_values_float, y_values_float, x_interpolate)
if interpolated_y is not None:
st.success(f"The interpolated value at x = {x_interpolate} is: **{interpolated_y:.4f}**")
st.subheader("Divided Difference Table:")
st.dataframe(dd_table.fillna(''))
st.subheader("Step-by-step Calculation:")
for step_latex in steps_latex:
st.latex(step_latex)
else:
st.error("An error occurred during interpolation. Please check your input data.")
except ValueError:
st.error("Invalid input. Please enter comma-separated numbers for x and y values.")
except Exception as e:
st.error(f"An unexpected error occurred: {e}") |