File size: 6,179 Bytes
1d1e539 33596ca 1d1e539 33596ca 1d1e539 5c81b63 1d1e539 5c81b63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
from diffusers import (
DiffusionPipeline,
TCDScheduler,
)
from compel import Compel
import torch
from transformers import CLIPVisionModelWithProjection
from huggingface_hub import hf_hub_download
try:
import intel_extension_for_pytorch as ipex # type: ignore
except:
pass
from config import Args
from pydantic import BaseModel, Field
from util import ParamsModel
from PIL import Image
model_id = "runwayml/stable-diffusion-v1-5"
ip_adapter_model = "ostris/ip-composition-adapter"
file_name = "ip_plus_composition_sd15.safetensors"
default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
page_content = """
<h1 class="text-3xl font-bold">Hyper-SD Unified + IP Adpater Composition</h1>
<h3 class="text-xl font-bold">Image-to-Image ControlNet</h3>
"""
class Pipeline:
class Info(BaseModel):
name: str = "controlnet+SDXL+Turbo"
title: str = "SDXL Turbo + Controlnet"
description: str = "Generates an image from a text prompt"
input_mode: str = "image"
page_content: str = page_content
class InputParams(ParamsModel):
prompt: str = Field(
default_prompt,
title="Prompt",
field="textarea",
id="prompt",
)
negative_prompt: str = Field(
default_negative_prompt,
title="Negative Prompt",
field="textarea",
id="negative_prompt",
hide=True,
)
seed: int = Field(
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
)
steps: int = Field(
2, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
)
width: int = Field(
512, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
)
height: int = Field(
512, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
)
guidance_scale: float = Field(
0.0,
min=0,
max=10,
step=0.001,
title="Guidance Scale",
field="range",
hide=True,
id="guidance_scale",
)
ip_adapter_scale: float = Field(
0.8,
min=0.0,
max=1.0,
step=0.001,
title="IP Adapter Scale",
field="range",
hide=True,
id="ip_adapter_scale",
)
eta: float = Field(
1.0,
min=0,
max=1.0,
step=0.001,
title="Eta",
field="range",
hide=True,
id="eta",
)
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"h94/IP-Adapter",
subfolder="models/image_encoder",
torch_dtype=torch.float16,
).to(device)
self.pipe = DiffusionPipeline.from_pretrained(
model_id,
safety_checker=None,
torch_dtype=torch_dtype,
image_encoder=image_encoder,
variant="fp16",
)
self.pipe.load_ip_adapter(
ip_adapter_model,
subfolder="",
weight_name=[file_name],
image_encoder_folder=None,
)
self.pipe.load_lora_weights(
hf_hub_download("ByteDance/Hyper-SD", "Hyper-SD15-1step-lora.safetensors")
)
self.pipe.fuse_lora()
self.pipe.scheduler = TCDScheduler.from_config(self.pipe.scheduler.config)
self.pipe.set_ip_adapter_scale([0.8])
# if args.compile:
# pipe.unet = oneflow_compile(pipe.unet, options=compile_options)
# pipe.vae.decoder = oneflow_compile(pipe.vae.decoder, options=compile_options)
if args.sfast:
from sfast.compilers.stable_diffusion_pipeline_compiler import (
compile,
CompilationConfig,
)
config = CompilationConfig.Default()
# config.enable_xformers = True
config.enable_triton = True
config.enable_cuda_graph = True
# cofig.
self.pipe = compile(self.pipe, config=config)
self.pipe.set_progress_bar_config(disable=True)
self.pipe.to(device=device)
if device.type != "mps":
self.pipe.unet.to(memory_format=torch.channels_last)
if args.compel:
self.compel_proc = Compel(
tokenizer=self.pipe.tokenizer,
text_encoder=self.pipe.text_encoder,
truncate_long_prompts=False,
)
if args.torch_compile:
self.pipe.unet = torch.compile(
self.pipe.unet, mode="reduce-overhead", fullgraph=True
)
self.pipe.vae = torch.compile(
self.pipe.vae, mode="reduce-overhead", fullgraph=True
)
self.pipe(
prompt="warmup",
image=[Image.new("RGB", (768, 768))],
)
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
generator = torch.manual_seed(params.seed)
self.pipe.set_ip_adapter_scale([params.ip_adapter_scale])
prompt_embeds = None
prompt = params.prompt
if hasattr(self, "compel_proc"):
prompt_embeds = self.compel_proc(prompt)
prompt = None
steps = params.steps
results = self.pipe(
prompt=prompt,
prompt_embeds=prompt_embeds,
generator=generator,
num_inference_steps=steps,
guidance_scale=params.guidance_scale,
width=params.width,
eta=params.eta,
height=params.height,
ip_adapter_image=[params.image],
output_type="pil",
)
return results.images[0]
|