File size: 7,145 Bytes
1d1e539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33596ca
1d1e539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33596ca
1d1e539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c81b63
 
 
 
 
 
 
 
1d1e539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c81b63
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from diffusers import (
    StableDiffusionXLPipeline,
    AutoencoderKL,
    TCDScheduler,
)
from compel import Compel, ReturnedEmbeddingsType
import torch
from transformers import CLIPVisionModelWithProjection
from huggingface_hub import hf_hub_download

try:
    import intel_extension_for_pytorch as ipex  # type: ignore
except:
    pass

from config import Args
from pydantic import BaseModel, Field
from util import ParamsModel
from PIL import Image

model_id = "stabilityai/stable-diffusion-xl-base-1.0"
taesd_model = "madebyollin/taesdxl"
ip_adapter_model = "ostris/ip-composition-adapter"
file_name = "ip_plus_composition_sdxl.safetensors"

default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
page_content = """
<h1 class="text-3xl font-bold">Hyper-SDXL Unified + IP Adpater Composition</h1>
<h3 class="text-xl font-bold">Image-to-Image ControlNet</h3>

"""


class Pipeline:
    class Info(BaseModel):
        name: str = "controlnet+SDXL+Turbo"
        title: str = "SDXL Turbo + Controlnet"
        description: str = "Generates an image from a text prompt"
        input_mode: str = "image"
        page_content: str = page_content

    class InputParams(ParamsModel):
        prompt: str = Field(
            default_prompt,
            title="Prompt",
            field="textarea",
            id="prompt",
        )
        negative_prompt: str = Field(
            default_negative_prompt,
            title="Negative Prompt",
            field="textarea",
            id="negative_prompt",
            hide=True,
        )
        seed: int = Field(
            2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
        )
        steps: int = Field(
            2, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
        )
        width: int = Field(
            1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
        )
        height: int = Field(
            1024, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
        )
        guidance_scale: float = Field(
            0.0,
            min=0,
            max=10,
            step=0.001,
            title="Guidance Scale",
            field="range",
            hide=True,
            id="guidance_scale",
        )
        ip_adapter_scale: float = Field(
            0.8,
            min=0.0,
            max=1.0,
            step=0.001,
            title="IP Adapter Scale",
            field="range",
            hide=True,
            id="ip_adapter_scale",
        )
        eta: float = Field(
            1.0,
            min=0,
            max=1.0,
            step=0.001,
            title="Eta",
            field="range",
            hide=True,
            id="eta",
        )

    def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
        vae = AutoencoderKL.from_pretrained(
            "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
        )
        image_encoder = CLIPVisionModelWithProjection.from_pretrained(
            "h94/IP-Adapter",
            subfolder="models/image_encoder",
            torch_dtype=torch.float16,
        ).to(device)

        self.pipe = StableDiffusionXLPipeline.from_pretrained(
            model_id,
            safety_checker=None,
            torch_dtype=torch_dtype,
            vae=vae,
            image_encoder=image_encoder,
            variant="fp16",
        )
        self.pipe.load_ip_adapter(
            ip_adapter_model,
            subfolder="",
            weight_name=[file_name],
            image_encoder_folder=None,
        )

        self.pipe.load_lora_weights(
            hf_hub_download("ByteDance/Hyper-SD", "Hyper-SDXL-1step-lora.safetensors")
        )
        self.pipe.fuse_lora()

        self.pipe.scheduler = TCDScheduler.from_config(self.pipe.scheduler.config)
        self.pipe.set_ip_adapter_scale([0.8])

        if args.sfast:
            from sfast.compilers.stable_diffusion_pipeline_compiler import (
                compile,
                CompilationConfig,
            )

            config = CompilationConfig.Default()
            # config.enable_xformers = True
            config.enable_triton = True
            config.enable_cuda_graph = True
            self.pipe = compile(self.pipe, config=config)

        self.pipe.set_progress_bar_config(disable=True)
        self.pipe.to(device=device)
        if device.type != "mps":
            self.pipe.unet.to(memory_format=torch.channels_last)

        if args.compel:
            self.pipe.compel_proc = Compel(
                tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
                text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
                returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
                requires_pooled=[False, True],
            )

        if args.torch_compile:
            self.pipe.unet = torch.compile(
                self.pipe.unet, mode="reduce-overhead", fullgraph=True
            )
            self.pipe.vae = torch.compile(
                self.pipe.vae, mode="reduce-overhead", fullgraph=True
            )
            self.pipe(
                prompt="warmup",
                image=[Image.new("RGB", (768, 768))],
            )

    def predict(self, params: "Pipeline.InputParams") -> Image.Image:
        generator = torch.manual_seed(params.seed)
        self.pipe.set_ip_adapter_scale([params.ip_adapter_scale])

        prompt = params.prompt
        negative_prompt = params.negative_prompt
        prompt_embeds = None
        pooled_prompt_embeds = None
        negative_prompt_embeds = None
        negative_pooled_prompt_embeds = None
        if hasattr(self.pipe, "compel_proc"):
            _prompt_embeds, pooled_prompt_embeds = self.pipe.compel_proc(
                [params.prompt, params.negative_prompt]
            )
            prompt = None
            negative_prompt = None
            prompt_embeds = _prompt_embeds[0:1]
            pooled_prompt_embeds = pooled_prompt_embeds[0:1]
            negative_prompt_embeds = _prompt_embeds[1:2]
            negative_pooled_prompt_embeds = pooled_prompt_embeds[1:2]

        steps = params.steps

        results = self.pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            generator=generator,
            num_inference_steps=steps,
            guidance_scale=params.guidance_scale,
            width=params.width,
            eta=params.eta,
            height=params.height,
            ip_adapter_image=[params.image],
            output_type="pil",
        )
        return results.images[0]