Spaces:
Running
on
A100
Running
on
A100
File size: 6,543 Bytes
947c4f5 5c81b63 947c4f5 5c81b63 947c4f5 5c81b63 947c4f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from PIL import Image
def cosine_distance(image_embeds, text_embeds):
normalized_image_embeds = nn.functional.normalize(image_embeds)
normalized_text_embeds = nn.functional.normalize(text_embeds)
return torch.mm(normalized_image_embeds, normalized_text_embeds.t())
class StableDiffusionSafetyChecker(PreTrainedModel):
config_class = CLIPConfig
_no_split_modules = ["CLIPEncoderLayer"]
def __init__(self, config: CLIPConfig):
super().__init__(config)
self.vision_model = CLIPVisionModel(config.vision_config)
self.visual_projection = nn.Linear(
config.vision_config.hidden_size, config.projection_dim, bias=False
)
self.concept_embeds = nn.Parameter(
torch.ones(17, config.projection_dim), requires_grad=False
)
self.special_care_embeds = nn.Parameter(
torch.ones(3, config.projection_dim), requires_grad=False
)
self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False)
self.special_care_embeds_weights = nn.Parameter(
torch.ones(3), requires_grad=False
)
@torch.no_grad()
def forward(self, clip_input, images):
pooled_output = self.vision_model(clip_input)[1] # pooled_output
image_embeds = self.visual_projection(pooled_output)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
special_cos_dist = (
cosine_distance(image_embeds, self.special_care_embeds)
.cpu()
.float()
.numpy()
)
cos_dist = (
cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy()
)
result = []
batch_size = image_embeds.shape[0]
for i in range(batch_size):
result_img = {
"special_scores": {},
"special_care": [],
"concept_scores": {},
"bad_concepts": [],
}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
adjustment = 0.0
for concept_idx in range(len(special_cos_dist[0])):
concept_cos = special_cos_dist[i][concept_idx]
concept_threshold = self.special_care_embeds_weights[concept_idx].item()
result_img["special_scores"][concept_idx] = round(
concept_cos - concept_threshold + adjustment, 3
)
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append(
{concept_idx, result_img["special_scores"][concept_idx]}
)
adjustment = 0.01
for concept_idx in range(len(cos_dist[0])):
concept_cos = cos_dist[i][concept_idx]
concept_threshold = self.concept_embeds_weights[concept_idx].item()
result_img["concept_scores"][concept_idx] = round(
concept_cos - concept_threshold + adjustment, 3
)
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(concept_idx)
result.append(result_img)
has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result]
return has_nsfw_concepts
@torch.no_grad()
def forward_onnx(self, clip_input: torch.FloatTensor, images: torch.FloatTensor):
pooled_output = self.vision_model(clip_input)[1] # pooled_output
image_embeds = self.visual_projection(pooled_output)
special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds)
cos_dist = cosine_distance(image_embeds, self.concept_embeds)
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
adjustment = 0.0
special_scores = (
special_cos_dist - self.special_care_embeds_weights + adjustment
)
# special_scores = special_scores.round(decimals=3)
special_care = torch.any(special_scores > 0, dim=1)
special_adjustment = special_care * 0.01
special_adjustment = special_adjustment.unsqueeze(1).expand(
-1, cos_dist.shape[1]
)
concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
has_nsfw_concepts = torch.any(concept_scores > 0, dim=1)
images[has_nsfw_concepts] = 0.0 # black image
return images, has_nsfw_concepts
class SafetyChecker:
def __init__(self, device="cuda"):
from transformers import CLIPFeatureExtractor
self.device = device
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker"
).to(device)
self.feature_extractor = CLIPFeatureExtractor.from_pretrained(
"openai/clip-vit-base-patch32"
)
def __call__(
self, images: list[Image.Image] | Image.Image
) -> tuple[list[Image.Image], list[bool]] | tuple[Image.Image, bool]:
images_list = [images] if isinstance(images, Image.Image) else images
safety_checker_input = self.feature_extractor(
images_list, return_tensors="pt"
).to(self.device)
has_nsfw_concepts = self.safety_checker(
images=[images_list],
clip_input=safety_checker_input.pixel_values.to(self.device),
)
if isinstance(images, Image.Image):
return images, has_nsfw_concepts[0]
return images, has_nsfw_concepts
|