Spaces:
Running
on
A100
Running
on
A100
from diffusers import ( | |
StableDiffusionXLPipeline, | |
AutoencoderKL, | |
TCDScheduler, | |
) | |
from compel import Compel, ReturnedEmbeddingsType | |
import torch | |
from transformers import CLIPVisionModelWithProjection | |
from huggingface_hub import hf_hub_download | |
try: | |
import intel_extension_for_pytorch as ipex # type: ignore | |
except: | |
pass | |
from config import Args | |
from pydantic import BaseModel, Field | |
from util import ParamsModel | |
from PIL import Image | |
model_id = "stabilityai/stable-diffusion-xl-base-1.0" | |
taesd_model = "madebyollin/taesdxl" | |
ip_adapter_model = "ostris/ip-composition-adapter" | |
file_name = "ip_plus_composition_sdxl.safetensors" | |
default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece" | |
default_negative_prompt = "blurry, low quality, render, 3D, oversaturated" | |
page_content = """ | |
<h1 class="text-3xl font-bold">Hyper-SDXL Unified + IP Adpater Composition</h1> | |
<h3 class="text-xl font-bold">Image-to-Image ControlNet</h3> | |
""" | |
class Pipeline: | |
class Info(BaseModel): | |
name: str = "controlnet+SDXL+Turbo" | |
title: str = "SDXL Turbo + Controlnet" | |
description: str = "Generates an image from a text prompt" | |
input_mode: str = "image" | |
page_content: str = page_content | |
class InputParams(ParamsModel): | |
prompt: str = Field( | |
default_prompt, | |
title="Prompt", | |
field="textarea", | |
id="prompt", | |
) | |
negative_prompt: str = Field( | |
default_negative_prompt, | |
title="Negative Prompt", | |
field="textarea", | |
id="negative_prompt", | |
hide=True, | |
) | |
seed: int = Field( | |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed" | |
) | |
steps: int = Field( | |
2, min=1, max=15, title="Steps", field="range", hide=True, id="steps" | |
) | |
width: int = Field( | |
1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width" | |
) | |
height: int = Field( | |
1024, min=2, max=15, title="Height", disabled=True, hide=True, id="height" | |
) | |
guidance_scale: float = Field( | |
0.0, | |
min=0, | |
max=10, | |
step=0.001, | |
title="Guidance Scale", | |
field="range", | |
hide=True, | |
id="guidance_scale", | |
) | |
ip_adapter_scale: float = Field( | |
0.8, | |
min=0.0, | |
max=1.0, | |
step=0.001, | |
title="IP Adapter Scale", | |
field="range", | |
hide=True, | |
id="ip_adapter_scale", | |
) | |
eta: float = Field( | |
1.0, | |
min=0, | |
max=1.0, | |
step=0.001, | |
title="Eta", | |
field="range", | |
hide=True, | |
id="eta", | |
) | |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype): | |
vae = AutoencoderKL.from_pretrained( | |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype | |
) | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
"h94/IP-Adapter", | |
subfolder="models/image_encoder", | |
torch_dtype=torch.float16, | |
).to(device) | |
self.pipe = StableDiffusionXLPipeline.from_pretrained( | |
model_id, | |
safety_checker=None, | |
torch_dtype=torch_dtype, | |
vae=vae, | |
image_encoder=image_encoder, | |
variant="fp16", | |
) | |
self.pipe.load_ip_adapter( | |
ip_adapter_model, | |
subfolder="", | |
weight_name=[file_name], | |
image_encoder_folder=None, | |
) | |
self.pipe.load_lora_weights( | |
hf_hub_download("ByteDance/Hyper-SD", "Hyper-SDXL-1step-lora.safetensors") | |
) | |
self.pipe.fuse_lora() | |
self.pipe.scheduler = TCDScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.set_ip_adapter_scale([0.8]) | |
if args.sfast: | |
from sfast.compilers.stable_diffusion_pipeline_compiler import ( | |
compile, | |
CompilationConfig, | |
) | |
config = CompilationConfig.Default() | |
# config.enable_xformers = True | |
config.enable_triton = True | |
config.enable_cuda_graph = True | |
self.pipe = compile(self.pipe, config=config) | |
self.pipe.set_progress_bar_config(disable=True) | |
self.pipe.to(device=device) | |
if device.type != "mps": | |
self.pipe.unet.to(memory_format=torch.channels_last) | |
if args.compel: | |
self.pipe.compel_proc = Compel( | |
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2], | |
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2], | |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, | |
requires_pooled=[False, True], | |
) | |
if args.torch_compile: | |
self.pipe.unet = torch.compile( | |
self.pipe.unet, mode="reduce-overhead", fullgraph=True | |
) | |
self.pipe.vae = torch.compile( | |
self.pipe.vae, mode="reduce-overhead", fullgraph=True | |
) | |
self.pipe( | |
prompt="warmup", | |
image=[Image.new("RGB", (768, 768))], | |
) | |
def predict(self, params: "Pipeline.InputParams") -> Image.Image: | |
generator = torch.manual_seed(params.seed) | |
self.pipe.set_ip_adapter_scale([params.ip_adapter_scale]) | |
prompt = params.prompt | |
negative_prompt = params.negative_prompt | |
prompt_embeds = None | |
pooled_prompt_embeds = None | |
negative_prompt_embeds = None | |
negative_pooled_prompt_embeds = None | |
if hasattr(self.pipe, "compel_proc"): | |
_prompt_embeds, pooled_prompt_embeds = self.pipe.compel_proc( | |
[params.prompt, params.negative_prompt] | |
) | |
prompt = None | |
negative_prompt = None | |
prompt_embeds = _prompt_embeds[0:1] | |
pooled_prompt_embeds = pooled_prompt_embeds[0:1] | |
negative_prompt_embeds = _prompt_embeds[1:2] | |
negative_pooled_prompt_embeds = pooled_prompt_embeds[1:2] | |
steps = params.steps | |
results = self.pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
generator=generator, | |
num_inference_steps=steps, | |
guidance_scale=params.guidance_scale, | |
width=params.width, | |
eta=params.eta, | |
height=params.height, | |
ip_adapter_image=[params.image], | |
output_type="pil", | |
) | |
return results.images[0] | |