Spaces:
Running
on
A100
Running
on
A100
import torch | |
from optimum.quanto import freeze, qfloat8, quantize | |
from transformers.modeling_utils import PreTrainedModel | |
from diffusers import AutoencoderTiny | |
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel | |
from diffusers.pipelines.flux.pipeline_flux_img2img import FluxImg2ImgPipeline | |
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast | |
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL | |
from pruna import smash, SmashConfig | |
from pruna.telemetry import set_telemetry_metrics | |
set_telemetry_metrics(False) # disable telemetry for current session | |
set_telemetry_metrics(False, set_as_default=True) # disable telemetry globally | |
try: | |
import intel_extension_for_pytorch as ipex # type: ignore | |
except: | |
pass | |
import psutil | |
from config import Args | |
from pydantic import BaseModel, Field | |
from PIL import Image | |
from pathlib import Path | |
from util import ParamsModel | |
import math | |
import gc | |
# model_path = "black-forest-labs/FLUX.1-dev" | |
model_path = "black-forest-labs/FLUX.1-schnell" | |
base_model_path = "black-forest-labs/FLUX.1-schnell" | |
taesd_path = "madebyollin/taef1" | |
subfolder = "transformer" | |
transformer_path = model_path | |
models_path = Path("models") | |
default_prompt = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux" | |
default_negative_prompt = "blurry, low quality, render, 3D, oversaturated" | |
page_content = """ | |
<h1 class="text-3xl font-bold">Real-Time FLUX</h1> | |
""" | |
def flush(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
class Pipeline: | |
class Info(BaseModel): | |
name: str = "img2img" | |
title: str = "Image-to-Image SDXL" | |
description: str = "Generates an image from a text prompt" | |
input_mode: str = "image" | |
page_content: str = page_content | |
class InputParams(ParamsModel): | |
prompt: str = Field( | |
default_prompt, | |
title="Prompt", | |
field="textarea", | |
id="prompt", | |
) | |
seed: int = Field( | |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed" | |
) | |
steps: int = Field( | |
1, min=1, max=15, title="Steps", field="range", hide=True, id="steps" | |
) | |
width: int = Field( | |
1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width" | |
) | |
height: int = Field( | |
1024, min=2, max=15, title="Height", disabled=True, hide=True, id="height" | |
) | |
strength: float = Field( | |
0.5, | |
min=0.25, | |
max=1.0, | |
step=0.001, | |
title="Strength", | |
field="range", | |
hide=True, | |
id="strength", | |
) | |
guidance: float = Field( | |
3.5, | |
min=0, | |
max=20, | |
step=0.001, | |
title="Guidance", | |
hide=True, | |
field="range", | |
id="guidance", | |
) | |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype): | |
# ckpt_path = ( | |
# "https://huggingface.co/city96/FLUX.1-dev-gguf/blob/main/flux1-dev-Q2_K.gguf" | |
# ) | |
print("Loading model") | |
model_id = "black-forest-labs/FLUX.1-schnell" | |
model_revision = "refs/pr/1" | |
text_model_id = "openai/clip-vit-large-patch14" | |
model_data_type = torch.bfloat16 | |
tokenizer = CLIPTokenizer.from_pretrained( | |
text_model_id, torch_dtype=model_data_type | |
) | |
text_encoder = CLIPTextModel.from_pretrained( | |
text_model_id, torch_dtype=model_data_type | |
) | |
# 2 | |
tokenizer_2 = T5TokenizerFast.from_pretrained( | |
model_id, | |
subfolder="tokenizer_2", | |
torch_dtype=model_data_type, | |
revision=model_revision, | |
) | |
text_encoder_2 = T5EncoderModel.from_pretrained( | |
model_id, | |
subfolder="text_encoder_2", | |
torch_dtype=model_data_type, | |
revision=model_revision, | |
) | |
# Transformers | |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained( | |
model_id, subfolder="scheduler", revision=model_revision | |
) | |
transformer = FluxTransformer2DModel.from_pretrained( | |
model_id, | |
subfolder="transformer", | |
torch_dtype=model_data_type, | |
revision=model_revision, | |
) | |
# VAE | |
# vae = AutoencoderKL.from_pretrained( | |
# model_id, | |
# subfolder="vae", | |
# torch_dtype=model_data_type, | |
# revision=model_revision, | |
# ) | |
vae = AutoencoderTiny.from_pretrained( | |
"madebyollin/taef1", torch_dtype=torch.bfloat16 | |
) | |
# Initialize the SmashConfig | |
smash_config = SmashConfig() | |
smash_config["quantizer"] = "quanto" | |
smash_config["quanto_calibrate"] = False | |
smash_config["quanto_weight_bits"] = "qint4" | |
# ( | |
# "qint4" # "qfloat8" # or "qint2", "qint4", "qint8" | |
# ) | |
transformer = smash( | |
model=transformer, | |
smash_config=smash_config, | |
) | |
text_encoder_2 = smash( | |
model=text_encoder_2, | |
smash_config=smash_config, | |
) | |
pipe = FluxImg2ImgPipeline( | |
scheduler=scheduler, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
text_encoder_2=text_encoder_2, | |
tokenizer_2=tokenizer_2, | |
vae=vae, | |
transformer=transformer, | |
) | |
# if args.taesd: | |
# pipe.vae = AutoencoderTiny.from_pretrained( | |
# taesd_path, torch_dtype=torch.bfloat16, use_safetensors=True | |
# ) | |
# pipe.enable_model_cpu_offload() | |
pipe.text_encoder.to(device) | |
pipe.vae.to(device) | |
pipe.transformer.to(device) | |
pipe.text_encoder_2.to(device) | |
# pipe.enable_model_cpu_offload() | |
# For added memory savings run this block, there is however a trade-off with speed. | |
# vae.enable_tiling() | |
# vae.enable_slicing() | |
# pipe.enable_sequential_cpu_offload() | |
self.pipe = pipe | |
self.pipe.set_progress_bar_config(disable=True) | |
# vae = AutoencoderKL.from_pretrained( | |
# base_model_path, subfolder="vae", torch_dtype=torch_dtype | |
# ) | |
def predict(self, params: "Pipeline.InputParams") -> Image.Image: | |
generator = torch.manual_seed(params.seed) | |
steps = params.steps | |
strength = params.strength | |
prompt = params.prompt | |
guidance = params.guidance | |
results = self.pipe( | |
image=params.image, | |
prompt=prompt, | |
generator=generator, | |
strength=strength, | |
num_inference_steps=steps, | |
guidance_scale=guidance, | |
width=params.width, | |
height=params.height, | |
) | |
return results.images[0] | |