File size: 6,038 Bytes
3ab0534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51d9b91
fc7fc7d
ff22bc5
 
3ab0534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49cd5f4
 
 
 
 
 
 
 
 
 
fc4c547
49cd5f4
 
3ab0534
e2950b2
d5fa086
 
fc4c547
d5fa086
fc4c547
 
d5fa086
 
49cd5f4
 
 
 
 
 
fc4c547
d5fa086
49cd5f4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import gradio as gr
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
import numpy as np
from sklearn.preprocessing import LabelEncoder

class CNN1DLSTMAudioClassifier(nn.Module):
    def __init__(self, num_classes, input_channels=1, sample_rate=16000, n_fft=400, hop_length=160):
        super(CNN1DLSTMAudioClassifier, self).__init__()

        # 1D CNN layers
        self.conv1 = nn.Conv1d(input_channels, 8, kernel_size=5, stride=1, padding=2)
        self.bn1 = nn.BatchNorm1d(8)
        self.pool1 = nn.MaxPool1d(kernel_size=2)
        self.conv2 = nn.Conv1d(8, 16, kernel_size=5, stride=1, padding=2)
        self.bn2 = nn.BatchNorm1d(16)
        self.pool2 = nn.MaxPool1d(kernel_size=2)
        self.conv3 = nn.Conv1d(16, 32, kernel_size=5, stride=1, padding=2)
        self.bn3 = nn.BatchNorm1d(32)
        self.pool3 = nn.MaxPool1d(kernel_size=2)

        # Calculate the output size of the last CNN layer
        self._to_linear = None
        self._calculate_to_linear(input_channels, sample_rate, n_fft, hop_length)

        # LSTM layers
        self.lstm = nn.LSTM(input_size=32, hidden_size=64, num_layers=3, batch_first=True, bidirectional=True)

        # Fully connected layer
        self.fc1 = nn.Linear(128, 64)
        self.fc2 = nn.Linear(64, 32)
        self.fc3 = nn.Linear(32, num_classes)

        # Dropout
        self.dropout = nn.Dropout(0.2)

    def _calculate_to_linear(self, input_channels, sample_rate, n_fft, hop_length):
        # Calculate the size of the input to the LSTM layer
        num_frames = (sample_rate - n_fft) // hop_length + 1
        x = torch.randn(1, input_channels, num_frames)
        self.convs(x)
        self._to_linear = x.shape[1]

    def convs(self, x):
        x = self.pool1(self.bn1(F.relu(self.conv1(x))))
        x = self.pool2(self.bn2(F.relu(self.conv2(x))))
        x = self.pool3(self.bn3(F.relu(self.conv3(x))))
        return x

    def forward(self, x):
        x = x.view(x.size(0), 1, -1)
        x = self.convs(x)

        x = x.permute(0, 2, 1)
        x, _ = self.lstm(x)
        x = x[:, -1, :]

        # Fully connected layers
        x = self.dropout(x)
        x = self.fc1(x)
        x = self.dropout(x)
        x = self.fc2(x)

        return x
    
num_class = 6
device = torch.device('cpu')
state_dict = torch.load('best_model.pth', map_location=device)
model = CNN1DLSTMAudioClassifier(num_class)
model.load_state_dict(state_dict)
model.eval()

def preprocess_single_audio(file_path, sample_rate=16000, n_mels=128, n_fft=2048, hop_length=512):
    # Load the audio file
    waveform, sr = torchaudio.load(file_path)
    
    # Resample if necessary
    if sr != sample_rate:
        resampler = torchaudio.transforms.Resample(sr, sample_rate)
        waveform = resampler(waveform)
    
    # Ensure consistent audio length (2 seconds)
    target_length = 2 * sample_rate
    if waveform.size(1) > target_length:
        waveform = waveform[:, :target_length]
    else:
        waveform = torch.nn.functional.pad(waveform, (0, target_length - waveform.size(1)))
    
    # Apply Mel Spectrogram transform
    mel_transform = torchaudio.transforms.MelSpectrogram(
        sample_rate=sample_rate,
        n_mels=n_mels,
        n_fft=n_fft,
        hop_length=hop_length
    )
    mel_spectrogram = mel_transform(waveform)
    
    # Normalize (use the mean and std from your training data)
    mean = 12.65
    std = 117.07
    normalized_mel_spectrogram = (mel_spectrogram - mean) / std
    
    # Flatten the mel spectrogram
    flattened = normalized_mel_spectrogram.flatten()
    
    if flattened.shape[0] < 12288:
        flattened = torch.nn.functional.pad(flattened, (0, 12288 - flattened.shape[0]))
    elif flattened.shape[0] > 12288:
        flattened = flattened[:12288]
    
    return flattened

def decode_emotion_prediction(prediction_tensor, label_encoder):
    """
    Decodes the prediction tensor into an emotion label.
    
    Args:
    prediction_tensor (torch.Tensor): The model's output tensor of shape [1, 6]
    label_encoder (LabelEncoder): The LabelEncoder used during training
    
    Returns:
    str: The predicted emotion label
    float: The confidence score for the prediction
    """
    # Get the index of the highest probability
    max_index = torch.argmax(prediction_tensor, dim=1).item()
    
    # Get the confidence score (probability) for the prediction
    confidence = torch.softmax(prediction_tensor, dim=1)[0, max_index].item()
    
    # Decode the index to get the emotion label
    predicted_emotion = label_encoder.inverse_transform([max_index])[0]
    
    return predicted_emotion, confidence

def predict(wave):
    if wave is None or wave == '':
        return "No audio input provided."
    try:
        wave = preprocess_single_audio(wave)
        le = LabelEncoder()
        le.classes_ = np.array(['Angry', 'Disgusting', 'Fear', 'Happy', 'Neutral', 'Sad'])
        wave = wave.unsqueeze(0)
        with torch.no_grad():
            prediction = model(wave)
        predicted_emotion, confidence = decode_emotion_prediction(prediction, le)
        return f"Your emotion is: {predicted_emotion} with {confidence*100:.4f}% confidence level."
    except Exception as e:
        return f'Error in processing audio: {str(e)}'

# Gradio Interface
article = """
### How It Works
- The model classifies the speech emotion given into 6 emotions (Angry, Happy, Sad, Disgusting, Fear, Neutral).
- It returns the highest chance of the emotion and its confidence level.
- This model is built with CNN Architecture combined with LSTM Architecture.
- Please use English to record your voice.
"""

iface = gr.Interface(
    fn=predict,
    inputs=gr.Audio(sources="microphone", type="filepath"),
    outputs="text",
    live=True,
    title="Speech Emotion Recognition",
    description="Record your voice to express an emotion and get the predicted emotion. The model only support English. Record it about 2-3 s",
    article=article
)

iface.launch()