rajsecrets0's picture
Create app.py
b650c29 verified
raw
history blame
12.4 kB
import streamlit as st
import cv2
from PIL import Image, ImageEnhance
import numpy as np
import time
from skimage.metrics import structural_similarity as ssim
import base64
from datetime import datetime
import torch
# Load pre-trained YOLOv5 model for object detection
@st.cache_resource
def load_yolo_model():
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
return model
def load_css():
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600&display=swap');
.stApp {
background: linear-gradient(135deg, #1a1a1a 0%, #2d2d2d 100%);
font-family: 'Inter', sans-serif;
color: #e0e0e0;
}
.main {
padding: 2rem;
max-width: 1200px;
margin: 0 auto;
}
.stButton>button {
background: linear-gradient(135deg, #2196F3 0%, #1976D2 100%);
color: white;
padding: 0.75rem 1.5rem;
border-radius: 10px;
border: none;
box-shadow: 0 4px 6px rgba(0,0,0,0.2);
transition: all 0.3s ease;
font-weight: 500;
letter-spacing: 0.5px;
}
.stButton>button:hover {
transform: translateY(-2px);
box-shadow: 0 6px 12px rgba(0,0,0,0.3);
}
.upload-container {
background: #2d2d2d;
border-radius: 15px;
padding: 1.5rem;
box-shadow: 0 4px 6px rgba(0,0,0,0.2);
transition: all 0.3s ease;
margin-bottom: 1rem;
}
.upload-container:hover {
box-shadow: 0 6px 12px rgba(0,0,0,0.3);
}
.upload-box {
border: 2px dashed #404040;
border-radius: 12px;
padding: 2rem;
text-align: center;
background: #333333;
transition: all 0.3s ease;
cursor: pointer;
}
.upload-box:hover {
border-color: #2196F3;
background: #383838;
}
.results-container {
background: #2d2d2d;
border-radius: 15px;
padding: 2rem;
box-shadow: 0 4px 6px rgba(0,0,0,0.2);
color: #e0e0e0;
}
.metric-card {
background: #333333;
border-radius: 10px;
padding: 1rem;
margin: 0.5rem 0;
border-left: 4px solid #2196F3;
color: #e0e0e0;
}
.stProgress > div > div {
background: linear-gradient(90deg, #2196F3, #64B5F6);
border-radius: 10px;
}
@keyframes pulse {
0% { opacity: 1; }
50% { opacity: 0.5; }
100% { opacity: 1; }
}
.loading {
animation: pulse 1.5s infinite;
}
</style>
""", unsafe_allow_html=True)
def enhance_image(image):
"""
Basic image enhancement with default settings
"""
enhancer = ImageEnhance.Brightness(image)
image = enhancer.enhance(1.0)
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(1.0)
enhancer = ImageEnhance.Sharpness(image)
image = enhancer.enhance(1.0)
return image
def compare_images(img1, img2, progress_bar):
"""
Compare two images and return the processed image, similarity score, and difference percentage
"""
try:
progress_bar.progress(0)
# Convert images to numpy arrays and ensure same size
img1 = np.array(img1.resize(img2.size))
img2 = np.array(img2)
progress_bar.progress(20)
# Normalize images
img1 = cv2.normalize(img1, None, 0, 255, cv2.NORM_MINMAX)
img2 = cv2.normalize(img2, None, 0, 255, cv2.NORM_MINMAX)
# Convert to grayscale
gray1 = cv2.cvtColor(img1, cv2.COLOR_RGB2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_RGB2GRAY)
progress_bar.progress(40)
# Calculate SSIM
score, diff = ssim(gray1, gray2, full=True)
progress_bar.progress(60)
# Generate heatmap
diff = (diff * 255).astype(np.uint8)
heatmap = cv2.applyColorMap(diff, cv2.COLORMAP_JET)
progress_bar.progress(80)
# Highlight differences in red color
diff_mask = cv2.absdiff(gray1, gray2)
diff_mask = cv2.cvtColor(diff_mask, cv2.COLOR_GRAY2RGB)
diff_mask[np.where((diff_mask == [255, 255, 255]).all(axis=2))] = [0, 0, 255] # Red color for differences
# Combine original image with difference mask
result_img = cv2.addWeighted(img1, 0.7, diff_mask, 0.3, 0)
# Calculate pixel-wise differences
diff_percentage = (np.count_nonzero(diff_mask[:, :, 2] > 0) / (diff_mask.shape[0] * diff_mask.shape[1])) * 100
# Ensure that the difference percentage is consistent with the similarity score
diff_percentage = 100 - (score * 100)
progress_bar.progress(100)
return result_img, score, diff_percentage, heatmap
except Exception as e:
st.error(f"Error comparing images: {str(e)}")
return None, 0, 0, None
def detect_objects(image, model):
"""
Perform object detection on the image using YOLOv5
"""
try:
results = model(image)
results_df = results.pandas().xyxy[0]
return results_df
except Exception as e:
st.error(f"Error in object detection: {str(e)}")
return None
def draw_object_boxes(image, objects_df):
"""
Draw bounding boxes on the image for detected objects
"""
for _, row in objects_df.iterrows():
xmin, ymin, xmax, ymax, confidence, class_name = int(row['xmin']), int(row['ymin']), int(row['xmax']), int(row['ymax']), row['confidence'], row['name']
# Draw bounding box
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
# Add label
cv2.putText(image, f"{class_name} {confidence:.2f}", (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
return image
def main():
load_css()
# Initialize session state for results
if "results" not in st.session_state:
st.session_state.results = None
# Load YOLOv5 model
yolo_model = load_yolo_model()
# App header
st.markdown("""
<div style='text-align: center; margin-bottom: 2rem; background: linear-gradient(135deg, #2196F3 0%, #1976D2 100%); padding: 2rem; border-radius: 15px; color: white;'>
<h1 style='margin: 0;'>πŸ” Image Comparison Tool</h1>
<p style='margin: 1rem 0 0 0; opacity: 0.9;'>Compare images, highlight differences, and detect objects</p>
</div>
""", unsafe_allow_html=True)
# Main content for image upload and display
st.markdown("<div class='upload-container'>", unsafe_allow_html=True)
st.markdown("### πŸ“ Upload Images")
col1, col2 = st.columns(2)
# Reference Image Upload
with col1:
reference_image = st.file_uploader(
"Drop or select reference image",
type=["jpg", "jpeg", "png"],
key="reference"
)
if reference_image:
img1 = Image.open(reference_image)
img1 = enhance_image(img1)
st.image(img1, caption="Reference Image", use_column_width=True)
# Clear previous results when a new image is uploaded
st.session_state.results = None
# New Image Upload
with col2:
new_image = st.file_uploader(
"Drop or select comparison image",
type=["jpg", "jpeg", "png"],
key="new"
)
if new_image:
img2 = Image.open(new_image)
img2 = enhance_image(img2)
st.image(img2, caption="Comparison Image", use_column_width=True)
# Clear previous results when a new image is uploaded
st.session_state.results = None
st.markdown("</div>", unsafe_allow_html=True)
# Sidebar for results and download
st.sidebar.markdown("### 🎯 Analysis Results")
if reference_image and new_image:
compare_button = st.sidebar.button("πŸ” Analyze Images", use_container_width=True)
if compare_button or st.session_state.results:
if not st.session_state.results:
with st.spinner("Processing images..."):
progress_bar = st.sidebar.progress(0)
start_time = time.time()
result_img, score, diff_percentage, heatmap = compare_images(img1, img2, progress_bar)
processing_time = time.time() - start_time
# Perform object detection
objects_df = detect_objects(result_img, yolo_model)
# Draw bounding boxes on the analyzed image
if objects_df is not None:
result_img = draw_object_boxes(result_img, objects_df)
# Store results in session state
st.session_state.results = {
"result_img": result_img,
"heatmap": heatmap,
"score": score,
"diff_percentage": diff_percentage,
"processing_time": processing_time,
"objects_df": objects_df
}
# Display analyzed image (processed image with differences highlighted) in sidebar
st.sidebar.image(st.session_state.results["result_img"], caption="Analyzed Image (Differences Highlighted)", use_column_width=True)
# Display heatmap in sidebar
st.sidebar.image(st.session_state.results["heatmap"], caption="Heatmap", use_column_width=True)
# Display metrics in sidebar
st.sidebar.markdown("### πŸ“Š Metrics")
st.sidebar.markdown(f"""
<div class='metric-card'>
<h4>Similarity Score</h4>
<h2 style='color: #2196F3'>{st.session_state.results["score"]:.2%}</h2>
</div>
""", unsafe_allow_html=True)
st.sidebar.markdown(f"""
<div class='metric-card'>
<h4>Difference Detected</h4>
<h2 style='color: #2196F3'>{st.session_state.results["diff_percentage"]:.2f}%</h2>
</div>
""", unsafe_allow_html=True)
st.sidebar.markdown(f"""
<div class='metric-card'>
<h4>Processing Time</h4>
<h2 style='color: #2196F3'>{st.session_state.results["processing_time"]:.2f}s</h2>
</div>
""", unsafe_allow_html=True)
# Display detected objects
if st.session_state.results["objects_df"] is not None:
st.sidebar.markdown("### πŸ” Detected Objects")
st.sidebar.dataframe(st.session_state.results["objects_df"])
# Download analyzed image
st.sidebar.markdown("### πŸ“₯ Download Analyzed Image")
st.sidebar.download_button(
"Download Analyzed Image",
data=cv2.imencode('.png', cv2.cvtColor(st.session_state.results["result_img"], cv2.COLOR_RGB2BGR))[1].tobytes(),
file_name=f"analyzed_image_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png",
mime="image/png"
)
# Footer
st.markdown("""
<div style='text-align: center; margin-top: 2rem; padding: 1rem; background: #2d2d2d; border-radius: 10px; box-shadow: 0 4px 6px rgba(0,0,0,0.2);'>
<p style='color: #888; margin: 0;'>Built with ❀️ using Streamlit | Last updated: December 2024</p>
<p style='color: #888; font-size: 0.9em; margin: 0.5rem 0 0 0;'>Image Comparison Tool v1.0</p>
</div>
""", unsafe_allow_html=True)
if __name__ == "__main__":
main()