File size: 3,171 Bytes
cd650c7
 
a26857e
adba430
 
 
cd650c7
adba430
 
923f75f
adba430
 
 
 
 
 
 
1fd65af
adba430
 
3c1274a
 
 
 
 
1fd65af
 
 
 
 
 
 
 
3c1274a
 
 
 
 
 
 
 
 
 
 
adba430
 
1fd65af
adba430
 
 
 
cd650c7
1fd65af
43561b8
adba430
 
 
 
 
cd650c7
adba430
cd650c7
1fd65af
 
 
 
 
 
 
adba430
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from huggingface_hub import InferenceClient
import gradio as gr
import PyPDF2
import random
import pandas as pd
from io import StringIO

# Initialize the inference client with your chosen model
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

def extract_text_from_pdf(file):
    pdf_reader = PyPDF2.PdfReader(file)
    text = ""
    for page in range(len(pdf_reader.pages)):
        text += pdf_reader.pages[page].extract_text()
    return text

def generate_synthetic_data(sentences, temperature, max_new_tokens, top_p, repetition_penalty):
    synthetic_data = []
    for sentence in sentences:
        # Trim whitespace and skip if the sentence is empty
        sentence = sentence.strip()
        if not sentence:
            continue
        
        generate_kwargs = {
            "temperature": temperature,
            "max_new_tokens": max_new_tokens,
            "top_p": top_p,
            "repetition_penalty": repetition_penalty,
            "do_sample": True,
            "seed": 42,
        }

        try:
            stream = client.text_generation(sentence, **generate_kwargs, stream=True, details=True, return_full_text=False)
            output = ""
            for response in stream:
                output += response.token.text
            synthetic_data.append(output)
        except Exception as e:
            print(f"Error generating data for sentence '{sentence}': {e}")
            # Optionally, append a placeholder or error message to `synthetic_data` to maintain alignment with input sentences
            synthetic_data.append(f"Error: {e}")
    return synthetic_data

def generate(file, temperature, max_new_tokens, top_p, repetition_penalty):
    # Extract text and split into sentences
    text = extract_text_from_pdf(file)
    sentences = text.split('.')
    random.shuffle(sentences)  # Shuffle sentences

    synthetic_data = generate_synthetic_data(sentences, temperature, max_new_tokens, top_p, repetition_penalty)

    # Convert synthetic data to CSV
    df = pd.DataFrame(synthetic_data, columns=["Synthetic Data"])
    csv_buffer = StringIO()
    df.to_csv(csv_buffer, index=False)
    return gr.File(value=csv_buffer.getvalue(), file_name="synthetic_data.csv")

gr.Interface(
    fn=generate,
    inputs=[
        gr.File(label="Upload PDF File", file_count="single", file_types=[".pdf"]),
        gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
        gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"),
        gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
        gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"),
    ],
    outputs="file",
    title="Synthetic Data Generation",
    description="This tool generates synthetic data from the sentences in your PDF.",
    allow_flagging="never",
).launch()