Spaces:
Running
Running
File size: 9,636 Bytes
2cb9dec b8b8738 2cb9dec 0611c31 2cb9dec 192ee60 2cb9dec 6f4f307 cccaa2c 2cb9dec c4f488d 2cb9dec b85ea78 2cb9dec b9c19b4 2cb9dec 0fd1b97 b8b8738 2cb9dec c4f488d 2cb9dec fdc226e ff94fdb 2cb9dec cccaa2c 2cb9dec 5c144a1 ad86a2b 5c144a1 0611c31 2cb9dec 0611c31 2cb9dec 0611c31 2cb9dec 0611c31 2cb9dec 0fd1b97 0611c31 0fd1b97 2cb9dec 2eb638f 6f4f307 2eb638f 6f4f307 0611c31 6f4f307 2eb638f 6f4f307 2eb638f 0611c31 2eb638f 2cb9dec 192ee60 2cb9dec cccaa2c ff94fdb cccaa2c b96eea7 cccaa2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import os
from fastapi import FastAPI, Depends, HTTPException
from fastapi.responses import JSONResponse, RedirectResponse
from fastapi.middleware.gzip import GZipMiddleware
from pydantic import BaseModel
from typing import List, Dict
from datasets import Dataset
from src.api.models.embedding_models import (
CreateEmbeddingRequest,
ReadEmbeddingRequest,
UpdateEmbeddingRequest,
DeleteEmbeddingRequest,
EmbedRequest,
SearchEmbeddingRequest,
)
from src.api.database import get_db, Database, QueryExecutionError, HealthCheckError
from src.api.services.embedding_service import EmbeddingService
from src.api.services.huggingface_service import HuggingFaceService
from src.api.exceptions import DatasetNotFoundError, DatasetPushError, OpenAIError
import logging
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Set up structured logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
description = """A FastAPI application for similarity search with PostgreSQL and OpenAI embeddings.
Direct/API URL:
https://re-mind-similarity-search.hf.space
"""
# Initialize FastAPI app
app = FastAPI(
title="Similarity Search API",
description=description,
version="1.0.0",
)
app.add_middleware(GZipMiddleware, minimum_size=1000)
# Dependency to get EmbeddingService
def get_embedding_service() -> EmbeddingService:
return EmbeddingService(openai_api_key=os.getenv("OPENAI_API_KEY"))
# Dependency to get HuggingFaceService
def get_huggingface_service() -> HuggingFaceService:
return HuggingFaceService()
# Root endpoint redirects to /docs
@app.get("/")
async def root():
return RedirectResponse(url="/docs")
# Health check endpoint
@app.get("/health")
async def health_check(db: Database = Depends(get_db)):
try:
is_healthy = await db.health_check()
if not is_healthy:
raise HTTPException(status_code=500, detail="Database is unhealthy")
return {"status": "healthy"}
except HealthCheckError as e:
raise HTTPException(status_code=500, detail=str(e))
# Endpoint to generate embeddings for a list of strings
@app.post("/embed")
async def embed(
request: EmbedRequest,
embedding_service: EmbeddingService = Depends(get_embedding_service),
):
"""
Generate embeddings for a list of strings and return them in the response.
"""
try:
# Step 1: Generate embeddings
logger.info("Generating embeddings for list of texts...")
embeddings = await embedding_service.create_embeddings(request.texts)
return JSONResponse(
content={
"message": "Embeddings generated successfully.",
"embeddings": embeddings,
"num_texts": len(request.texts),
}
)
except OpenAIError as e:
logger.error(f"OpenAI API error: {e}")
raise HTTPException(status_code=500, detail=f"OpenAI API error: {e}")
except Exception as e:
logger.error(f"An error occurred: {e}")
raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
# Endpoint to create embeddings from a database query
@app.post("/create_embeddings")
async def create_embedding(
request: CreateEmbeddingRequest,
db: Database = Depends(get_db),
embedding_service: EmbeddingService = Depends(get_embedding_service),
huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
):
"""
Create embeddings for the target column in the dataset.
"""
try:
embedding_service.model = request.model
embedding_service.batch_size = request.batch_size
# embedding_service.max_concurrent_requests = request.max_concurrent_requests
# Step 1: Query the database
logger.info("Fetching data from the database...")
result = await db.fetch(request.query)
# logger.info(f"{result}")
dataset = Dataset.from_dict(result)
# Step 2: Generate embeddings
dataset = await embedding_service.create_embeddings(
dataset, request.target_column, request.output_column
)
# Step 3: Push to Hugging Face Hub
await huggingface_service.push_to_hub(dataset, request.dataset_name)
return JSONResponse(
content={
"message": "Embeddings created and pushed to Hugging Face Hub.",
"dataset_name": request.dataset_name,
"num_rows": len(dataset),
}
)
except QueryExecutionError as e:
logger.error(f"Database query failed: {e}")
raise HTTPException(status_code=500, detail=f"Database query failed: {e}")
except OpenAIError as e:
logger.error(f"OpenAI API error: {e}")
raise HTTPException(status_code=500, detail=f"OpenAI API error: {e}")
except DatasetPushError as e:
logger.error(f"Failed to push dataset: {e}")
raise HTTPException(status_code=500, detail=f"Failed to push dataset: {e}")
except Exception as e:
logger.error(f"An error occurred: {e}")
raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
# Endpoint to read embeddings
@app.post("/read_embeddings")
async def read_embeddings(
request: ReadEmbeddingRequest,
huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
):
"""
Read embeddings from a Hugging Face dataset.
"""
try:
dataset = await huggingface_service.read_dataset(request.dataset_name)
return dataset.to_dict()
except DatasetNotFoundError as e:
logger.error(f"Dataset not found: {e}")
raise HTTPException(status_code=404, detail=f"Dataset not found: {e}")
except Exception as e:
logger.error(f"An error occurred: {e}")
raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
# Endpoint to update embeddings
@app.post("/update_embeddings")
async def update_embeddings(
request: UpdateEmbeddingRequest,
huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
):
"""
Update embeddings in a Hugging Face dataset by generating embeddings for new data and concatenating it with the existing dataset.
"""
try:
# Call the update_dataset method to generate embeddings, concatenate, and push the updated dataset
updated_dataset = await huggingface_service.update_dataset(
request.dataset_name,
request.updates,
request.target_column,
request.output_column,
)
return {
"message": "Embeddings updated successfully.",
"dataset_name": request.dataset_name,
"num_rows": len(updated_dataset),
}
except DatasetPushError as e:
logger.error(f"Failed to update dataset: {e}")
raise HTTPException(status_code=500, detail=f"Failed to update dataset: {e}")
except Exception as e:
logger.error(f"An error occurred: {e}")
raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
# Endpoint to delete embeddings
@app.post("/delete_embeddings")
async def delete_embeddings(
request: DeleteEmbeddingRequest,
huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
):
"""
Delete embeddings from a Hugging Face dataset.
"""
try:
await huggingface_service.delete_dataset(request.dataset_name)
return {
"message": "Embeddings deleted successfully.",
"dataset_name": request.dataset_name,
}
except DatasetPushError as e:
logger.error(f"Failed to delete columns: {e}")
raise HTTPException(status_code=500, detail=f"Failed to delete columns: {e}")
except Exception as e:
logger.error(f"An error occurred: {e}")
raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
@app.post("/search_embeddings")
async def search_embedding(
request: SearchEmbeddingRequest,
embedding_service: EmbeddingService = Depends(get_embedding_service),
huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
):
"""
Search for similar texts in a dataset using embeddings.
"""
try:
# Step 1: Generate embeddings for the query texts
logger.info("Generating embeddings for query texts...")
query_embeddings = await embedding_service.create_embeddings(request.texts)
# Step 2: Load the dataset from Hugging Face Hub
logger.info(f"Loading dataset from Hugging Face Hub: {request.dataset_name}...")
dataset = await huggingface_service.read_dataset(request.dataset_name)
# Step 3: Perform cosine similarity search
logger.info("Performing cosine similarity search...")
results = await embedding_service.search_embeddings(
query_embeddings,
dataset,
request.embedding_column,
request.target_column,
request.num_results,
request.additional_columns,
)
return JSONResponse(
content={
"message": "Search completed successfully.",
"results": results,
}
)
except DatasetNotFoundError as e:
logger.error(f"Dataset not found: {e}")
raise HTTPException(status_code=404, detail=f"Dataset not found: {e}")
except Exception as e:
logger.error(f"An error occurred: {e}")
raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|