File size: 9,636 Bytes
2cb9dec
 
 
b8b8738
2cb9dec
 
0611c31
2cb9dec
 
192ee60
2cb9dec
 
6f4f307
cccaa2c
2cb9dec
 
 
 
 
c4f488d
2cb9dec
 
 
 
 
 
 
 
 
 
 
 
b85ea78
 
 
 
 
 
2cb9dec
 
 
b9c19b4
2cb9dec
 
 
0fd1b97
b8b8738
2cb9dec
c4f488d
 
 
 
 
 
 
 
 
 
2cb9dec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdc226e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff94fdb
2cb9dec
 
 
 
 
 
 
 
 
 
cccaa2c
 
 
 
2cb9dec
 
 
5c144a1
ad86a2b
5c144a1
0611c31
2cb9dec
 
0611c31
 
2cb9dec
 
 
0611c31
2cb9dec
 
 
 
 
0611c31
2cb9dec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fd1b97
 
 
 
 
 
 
 
 
0611c31
 
0fd1b97
 
 
 
 
 
2cb9dec
 
2eb638f
 
 
 
 
 
 
6f4f307
2eb638f
 
6f4f307
0611c31
6f4f307
 
 
 
2eb638f
6f4f307
2eb638f
 
 
0611c31
2eb638f
 
 
 
 
 
 
 
 
2cb9dec
 
 
 
 
 
 
 
 
 
192ee60
2cb9dec
 
 
 
 
 
 
 
 
 
cccaa2c
 
ff94fdb
cccaa2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b96eea7
cccaa2c
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import os
from fastapi import FastAPI, Depends, HTTPException
from fastapi.responses import JSONResponse, RedirectResponse
from fastapi.middleware.gzip import GZipMiddleware
from pydantic import BaseModel
from typing import List, Dict
from datasets import Dataset
from src.api.models.embedding_models import (
    CreateEmbeddingRequest,
    ReadEmbeddingRequest,
    UpdateEmbeddingRequest,
    DeleteEmbeddingRequest,
    EmbedRequest,
    SearchEmbeddingRequest,
)
from src.api.database import get_db, Database, QueryExecutionError, HealthCheckError
from src.api.services.embedding_service import EmbeddingService
from src.api.services.huggingface_service import HuggingFaceService
from src.api.exceptions import DatasetNotFoundError, DatasetPushError, OpenAIError

import logging
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Set up structured logging
logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)

description = """A FastAPI application for similarity search with PostgreSQL and OpenAI embeddings.

Direct/API URL:
https://re-mind-similarity-search.hf.space
"""

# Initialize FastAPI app
app = FastAPI(
    title="Similarity Search API",
    description=description,
    version="1.0.0",
)

app.add_middleware(GZipMiddleware, minimum_size=1000)


# Dependency to get EmbeddingService
def get_embedding_service() -> EmbeddingService:
    return EmbeddingService(openai_api_key=os.getenv("OPENAI_API_KEY"))


# Dependency to get HuggingFaceService
def get_huggingface_service() -> HuggingFaceService:
    return HuggingFaceService()


# Root endpoint redirects to /docs
@app.get("/")
async def root():
    return RedirectResponse(url="/docs")


# Health check endpoint
@app.get("/health")
async def health_check(db: Database = Depends(get_db)):
    try:
        is_healthy = await db.health_check()
        if not is_healthy:
            raise HTTPException(status_code=500, detail="Database is unhealthy")
        return {"status": "healthy"}
    except HealthCheckError as e:
        raise HTTPException(status_code=500, detail=str(e))


# Endpoint to generate embeddings for a list of strings
@app.post("/embed")
async def embed(
    request: EmbedRequest,
    embedding_service: EmbeddingService = Depends(get_embedding_service),
):
    """
    Generate embeddings for a list of strings and return them in the response.
    """
    try:
        # Step 1: Generate embeddings
        logger.info("Generating embeddings for list of texts...")
        embeddings = await embedding_service.create_embeddings(request.texts)

        return JSONResponse(
            content={
                "message": "Embeddings generated successfully.",
                "embeddings": embeddings,
                "num_texts": len(request.texts),
            }
        )
    except OpenAIError as e:
        logger.error(f"OpenAI API error: {e}")
        raise HTTPException(status_code=500, detail=f"OpenAI API error: {e}")
    except Exception as e:
        logger.error(f"An error occurred: {e}")
        raise HTTPException(status_code=500, detail=f"An error occurred: {e}")


# Endpoint to create embeddings from a database query
@app.post("/create_embeddings")
async def create_embedding(
    request: CreateEmbeddingRequest,
    db: Database = Depends(get_db),
    embedding_service: EmbeddingService = Depends(get_embedding_service),
    huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
):
    """
    Create embeddings for the target column in the dataset.
    """
    try:
        embedding_service.model = request.model
        embedding_service.batch_size = request.batch_size
        # embedding_service.max_concurrent_requests = request.max_concurrent_requests

        # Step 1: Query the database
        logger.info("Fetching data from the database...")
        result = await db.fetch(request.query)

        # logger.info(f"{result}")

        dataset = Dataset.from_dict(result)

        # Step 2: Generate embeddings
        dataset = await embedding_service.create_embeddings(
            dataset, request.target_column, request.output_column
        )

        # Step 3: Push to Hugging Face Hub
        await huggingface_service.push_to_hub(dataset, request.dataset_name)

        return JSONResponse(
            content={
                "message": "Embeddings created and pushed to Hugging Face Hub.",
                "dataset_name": request.dataset_name,
                "num_rows": len(dataset),
            }
        )
    except QueryExecutionError as e:
        logger.error(f"Database query failed: {e}")
        raise HTTPException(status_code=500, detail=f"Database query failed: {e}")
    except OpenAIError as e:
        logger.error(f"OpenAI API error: {e}")
        raise HTTPException(status_code=500, detail=f"OpenAI API error: {e}")
    except DatasetPushError as e:
        logger.error(f"Failed to push dataset: {e}")
        raise HTTPException(status_code=500, detail=f"Failed to push dataset: {e}")
    except Exception as e:
        logger.error(f"An error occurred: {e}")
        raise HTTPException(status_code=500, detail=f"An error occurred: {e}")


# Endpoint to read embeddings
@app.post("/read_embeddings")
async def read_embeddings(
    request: ReadEmbeddingRequest,
    huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
):
    """
    Read embeddings from a Hugging Face dataset.
    """
    try:
        dataset = await huggingface_service.read_dataset(request.dataset_name)
        return dataset.to_dict()
    except DatasetNotFoundError as e:
        logger.error(f"Dataset not found: {e}")
        raise HTTPException(status_code=404, detail=f"Dataset not found: {e}")
    except Exception as e:
        logger.error(f"An error occurred: {e}")
        raise HTTPException(status_code=500, detail=f"An error occurred: {e}")


# Endpoint to update embeddings
@app.post("/update_embeddings")
async def update_embeddings(
    request: UpdateEmbeddingRequest,
    huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
):
    """
    Update embeddings in a Hugging Face dataset by generating embeddings for new data and concatenating it with the existing dataset.
    """
    try:
        # Call the update_dataset method to generate embeddings, concatenate, and push the updated dataset
        updated_dataset = await huggingface_service.update_dataset(
            request.dataset_name,
            request.updates,
            request.target_column,
            request.output_column,
        )

        return {
            "message": "Embeddings updated successfully.",
            "dataset_name": request.dataset_name,
            "num_rows": len(updated_dataset),
        }
    except DatasetPushError as e:
        logger.error(f"Failed to update dataset: {e}")
        raise HTTPException(status_code=500, detail=f"Failed to update dataset: {e}")
    except Exception as e:
        logger.error(f"An error occurred: {e}")
        raise HTTPException(status_code=500, detail=f"An error occurred: {e}")


# Endpoint to delete embeddings
@app.post("/delete_embeddings")
async def delete_embeddings(
    request: DeleteEmbeddingRequest,
    huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
):
    """
    Delete embeddings from a Hugging Face dataset.
    """
    try:
        await huggingface_service.delete_dataset(request.dataset_name)
        return {
            "message": "Embeddings deleted successfully.",
            "dataset_name": request.dataset_name,
        }
    except DatasetPushError as e:
        logger.error(f"Failed to delete columns: {e}")
        raise HTTPException(status_code=500, detail=f"Failed to delete columns: {e}")
    except Exception as e:
        logger.error(f"An error occurred: {e}")
        raise HTTPException(status_code=500, detail=f"An error occurred: {e}")


@app.post("/search_embeddings")
async def search_embedding(
    request: SearchEmbeddingRequest,
    embedding_service: EmbeddingService = Depends(get_embedding_service),
    huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
):
    """
    Search for similar texts in a dataset using embeddings.
    """
    try:
        # Step 1: Generate embeddings for the query texts
        logger.info("Generating embeddings for query texts...")
        query_embeddings = await embedding_service.create_embeddings(request.texts)

        # Step 2: Load the dataset from Hugging Face Hub
        logger.info(f"Loading dataset from Hugging Face Hub: {request.dataset_name}...")
        dataset = await huggingface_service.read_dataset(request.dataset_name)

        # Step 3: Perform cosine similarity search
        logger.info("Performing cosine similarity search...")
        results = await embedding_service.search_embeddings(
            query_embeddings,
            dataset,
            request.embedding_column,
            request.target_column,
            request.num_results,
            request.additional_columns,
        )

        return JSONResponse(
            content={
                "message": "Search completed successfully.",
                "results": results,
            }
        )
    except DatasetNotFoundError as e:
        logger.error(f"Dataset not found: {e}")
        raise HTTPException(status_code=404, detail=f"Dataset not found: {e}")
    except Exception as e:
        logger.error(f"An error occurred: {e}")
        raise HTTPException(status_code=500, detail=f"An error occurred: {e}")