Spaces:
Runtime error
Runtime error
from dotenv import load_dotenv | |
import gradio as gr | |
import os | |
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings | |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
from sentence_transformers import SentenceTransformer | |
import datetime | |
import random | |
def select_random_name(): | |
names = ['Clara', 'Lily'] | |
return random.choice(names) | |
# Example usage | |
# Load environment variables | |
load_dotenv() | |
# Configure the Llama index settings | |
Settings.llm = HuggingFaceInferenceAPI( | |
model_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
context_window=3000, | |
token=os.getenv("HF_TOKEN"), | |
max_new_tokens=512, | |
generate_kwargs={"temperature": 0.1}, | |
) | |
Settings.embed_model = HuggingFaceEmbedding( | |
model_name="BAAI/bge-small-en-v1.5" | |
) | |
# Define the directory for persistent storage and data | |
PERSIST_DIR = "db" | |
PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs | |
# Ensure directories exist | |
os.makedirs(PDF_DIRECTORY, exist_ok=True) | |
os.makedirs(PERSIST_DIR, exist_ok=True) | |
# Variable to store current chat conversation | |
current_chat_history = [] | |
kkk = select_random_name() | |
def data_ingestion_from_directory(): | |
# Use SimpleDirectoryReader on the directory containing the PDF files | |
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() | |
storage_context = StorageContext.from_defaults() | |
index = VectorStoreIndex.from_documents(documents) | |
index.storage_context.persist(persist_dir=PERSIST_DIR) | |
def handle_query(query): | |
chat_text_qa_msgs = [ | |
( | |
"user", | |
""" | |
You are the Lily Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. give response within 10-15 words only | |
{context_str} | |
Question: | |
{query_str} | |
""" | |
) | |
] | |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) | |
# Load index from storage | |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) | |
index = load_index_from_storage(storage_context) | |
# Use chat history to enhance response | |
context_str = "" | |
for past_query, response in reversed(current_chat_history): | |
if past_query.strip(): | |
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n" | |
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) | |
answer = query_engine.query(query) | |
if hasattr(answer, 'response'): | |
response = answer.response | |
elif isinstance(answer, dict) and 'response' in answer: | |
response = answer['response'] | |
else: | |
response = "Sorry, I couldn't find an answer." | |
# Update current chat history | |
current_chat_history.append((query, response)) | |
return response | |
# Example usage: Process PDF ingestion from directory | |
print("Processing PDF ingestion from directory:", PDF_DIRECTORY) | |
data_ingestion_from_directory() | |
# Define the function to handle predictions | |
def predict(message, history): | |
logo_html = ''' | |
<div class="circle-logo"> | |
<img src="https://rb.gy/8r06eg" alt="FernAi"> | |
</div> | |
''' | |
response = handle_query(message) | |
response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>' | |
return response_with_logo | |
# Define your Gradio chat interface function (replace with your actual logic) | |
def chat_interface(message, history): | |
try: | |
# Process the user message and generate a response (your chatbot logic) | |
response = handle_query(message) | |
# Return the bot response | |
return response | |
except Exception as e: | |
return str(e) | |
# Custom CSS for styling | |
css = ''' | |
.circle-logo { | |
display: inline-block; | |
width: 40px; | |
height: 40px; | |
border-radius: 50%; | |
overflow: hidden; | |
margin-right: 10px; | |
vertical-align: middle; | |
} | |
.circle-logo img { | |
width: 100%; | |
height: 100%; | |
object-fit: cover; | |
} | |
.response-with-logo { | |
display: flex; | |
align-items: center; | |
margin-bottom: 10px; | |
} | |
footer { | |
display: none !important; | |
background-color: #F8D7DA; | |
} | |
label.svelte-1b6s6s {display: none} | |
div.svelte-rk35yg {display: none;} | |
div.progress-text.svelte-z7cif2.meta-text {display: none;} | |
''' | |
gr.ChatInterface(chat_interface, | |
css=css, | |
description="Lily", | |
clear_btn=None, undo_btn=None, retry_btn=None, | |
).launch() | |