Spaces:
Sleeping
Sleeping
File size: 6,926 Bytes
c238d7d fcb4f92 c238d7d e60d54e fcb4f92 c238d7d e60d54e c238d7d fcb4f92 c238d7d fcb4f92 c238d7d fcb4f92 e60d54e c238d7d e60d54e c238d7d 3bcf905 e60d54e c238d7d fcb4f92 e60d54e c238d7d fcb4f92 e60d54e c238d7d fcb4f92 c238d7d fcb4f92 e60d54e c238d7d fcb4f92 c238d7d e60d54e c238d7d 3bcf905 c238d7d e60d54e c238d7d e60d54e c238d7d e60d54e 43bb94b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
# import streamlit as st
# import pandas as pd
# import plotly.express as px
# from app_backend import fetch_weather, generate_synthetic_data, optimize_load
# # Constants
# API_KEY = "84e26811a314599e940f343b4d5894a7"
# LOCATION = "Pakistan"
# # Sidebar
# st.sidebar.title("Smart Grid Dashboard")
# location = st.sidebar.text_input("Enter Location", LOCATION)
# # Fetch and display weather data
# weather = fetch_weather(API_KEY, location)
# if weather:
# st.sidebar.write(f"Temperature: {weather['temperature']} °C")
# st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
# st.sidebar.write(f"Weather: {weather['weather']}")
# # Main dashboard with tabs
# tabs = st.tabs(["Home", "Electricity Storage", "Electricity Trading"])
# with tabs[0]:
# st.title("Real-Time Smart Grid Dashboard")
# # Generate synthetic data
# data = generate_synthetic_data()
# # Plot total consumption, grid generation, and storage usage
# fig = px.line(data, x="timestamp", y=["total_consumption_kwh", "grid_generation_kwh", "storage_usage_kwh"],
# title="Energy Consumption, Generation, and Storage Usage Over Time",
# labels={"value": "Energy (kWh)", "variable": "Energy Source"})
# st.plotly_chart(fig)
# # Grid health overview
# st.subheader("Grid Health Overview")
# grid_health_counts = data["grid_health"].value_counts()
# st.bar_chart(grid_health_counts)
# # Optimization recommendations
# current_demand = data["total_consumption_kwh"].iloc[-1]
# current_solar = data["solar_output_kw"].iloc[-1]
# current_wind = data["wind_output_kw"].iloc[-1]
# recommendation = optimize_load(current_demand, current_solar, current_wind)
# st.subheader("Recommendations")
# st.write(f"Current Load Demand: {current_demand} kWh")
# st.write(f"Solar Output: {current_solar} kW")
# st.write(f"Wind Output: {current_wind} kW")
# st.write(f"Recommendation: {recommendation}")
# with tabs[1]:
# st.title("Energy Storage Overview")
# # Total energy stored
# total_storage = 500 # Example of total energy storage
# st.subheader(f"Total Energy Stored: {total_storage} kWh")
# # Energy storage contribution from different sources
# st.subheader("Energy Storage Contributions")
# energy_sources = pd.DataFrame({
# "Source": ["Wind", "Solar", "Turbine"],
# "Energy (kW/min)": [5, 7, 10]
# })
# st.bar_chart(energy_sources.set_index("Source"))
# # Show energy storage status with a rounded circle
# st.subheader("Energy Storage Circle")
# st.markdown("Energy storage is a combination of contributions from different renewable sources.")
# # Visualization of energy storage circle using Plotly
# storage_data = {
# "Source": ["Wind", "Solar", "Turbine"],
# "Energy": [5, 7, 10],
# }
# storage_df = pd.DataFrame(storage_data)
# fig = px.pie(storage_df, names="Source", values="Energy", title="Energy Storage Sources")
# st.plotly_chart(fig)
# with tabs[2]:
# st.title("Energy Trading Overview")
# # Energy cubes
# st.subheader("Energy Cubes Stored")
# energy_cubes = pd.DataFrame({
# "Country": ["China", "Sri Lanka", "Bangladesh"],
# "Energy (kWh)": [100, 200, 300],
# "Shareable": [True, True, False]
# })
# # Displaying the energy cubes in a grid
# st.write("Stored energy can be shared with other countries.")
# st.dataframe(energy_cubes)
# # Visualization of energy that can be shared
# st.subheader("Energy Trading Visualization")
# st.markdown("The following energy amounts are available for sharing with different countries.")
# trading_fig = px.bar(energy_cubes, x="Country", y="Energy (kWh)", color="Shareable", title="Energy Trading")
# st.plotly_chart(trading_fig)
import streamlit as st
import pandas as pd
import plotly.graph_objects as go
from app_backend import fetch_weather, generate_synthetic_data, generate_storage_data
# Constants
API_KEY = "84e26811a314599e940f343b4d5894a7"
DEFAULT_LOCATION = "Pakistan"
# Sidebar for location and weather data
st.sidebar.title("Smart Grid Dashboard")
location = st.sidebar.text_input("Enter Location", DEFAULT_LOCATION)
weather = fetch_weather(API_KEY, location)
if weather:
st.sidebar.write(f"Temperature: {weather['temperature']} °C")
st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
st.sidebar.write(f"Weather: {weather['weather']}")
# Main interface
st.title("Real-Time Smart Grid Dashboard")
# Tabs
tabs = st.tabs(["Home", "Power Storage", "Electricity Trade Management"])
# Home Tab
with tabs[0]:
st.header("Overview: Power and Energy Usage")
# Fetch synthetic data
data = generate_synthetic_data()
# Line Graph for Power Consumption, Generation, and Storage
fig = go.Figure()
fig.add_trace(go.Scatter(
x=data["timestamp"],
y=data["total_power_consumption_mw"],
mode='lines',
name="Total Power Consumption (MW)",
line=dict(color="red")
))
fig.add_trace(go.Scatter(
x=data["timestamp"],
y=data["grid_generation_mw"],
mode='lines',
name="Grid Generation (MW)",
line=dict(color="green")
))
fig.add_trace(go.Scatter(
x=data["timestamp"],
y=data["storage_utilization_mw"],
mode='lines',
name="Storage Utilization (MW)",
line=dict(color="blue")
))
fig.update_layout(title="Power and Energy Trends", xaxis_title="Time", yaxis_title="Power (MW)")
st.plotly_chart(fig)
# Storage Tab
with tabs[1]:
st.header("Energy Storage Overview")
storage_data = generate_storage_data()
st.write(f"**Total Energy Stored:** {storage_data['total_stored_kwh']} kWh")
# Circular storage breakdown
sources = ["Wind", "Solar", "Turbine"]
values = [storage_data["wind"], storage_data["solar"], storage_data["turbine"]]
fig = go.Figure(data=[go.Pie(labels=sources, values=values, hole=.4)])
fig.update_layout(title="Energy Storage Breakdown")
st.plotly_chart(fig)
# Electricity Trade Management Tab
with tabs[2]:
st.header("Electricity Trade Management")
# Sample trade data
trade_data = {
"Country": ["Srilanka", "China", "Bangladesh"],
"Energy Exported (MW)": [50, 30, 70],
"Energy Imported (MW)": [20, 40, 10],
}
trade_df = pd.DataFrame(trade_data)
st.subheader("Trade Details")
st.write(trade_df)
# Visualization
fig = go.Figure()
fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Exported (MW)"], name="Exported", marker_color='purple'))
fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Imported (MW)"], name="Imported", marker_color='orange'))
fig.update_layout(title="Energy Trade", barmode='group')
st.plotly_chart(fig)
|