File size: 8,271 Bytes
2724a3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b24634c
 
 
 
 
e849fe2
 
 
 
fbf2a5a
e849fe2
 
 
 
 
 
 
 
 
 
 
fbf2a5a
e849fe2
 
 
 
 
 
 
 
 
fbf2a5a
e849fe2
 
 
 
 
 
 
 
fbf2a5a
e849fe2
 
 
fbf2a5a
 
 
b24634c
 
 
 
fbf2a5a
b24634c
fbf2a5a
b24634c
 
 
 
fbf2a5a
 
 
 
b24634c
 
fbf2a5a
b24634c
fbf2a5a
 
 
 
b24634c
fbf2a5a
 
 
 
b24634c
 
fbf2a5a
 
 
 
 
 
 
 
 
 
b24634c
fbf2a5a
 
 
 
 
 
 
 
b24634c
fbf2a5a
 
 
b24634c
e849fe2
 
 
 
 
 
 
8f2dde4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ed16f3
 
 
 
 
 
8f2dde4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e849fe2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# import pandas as pd
# import numpy as np
# import plotly.express as px
# from datetime import datetime, timedelta
# import requests

# # Function to fetch real-time weather data
# def fetch_weather(api_key, location):
#     url = f"http://api.openweathermap.org/data/2.5/weather?q={location}&appid={api_key}&units=metric"
#     response = requests.get(url).json()
#     if response["cod"] == 200:
#         return {
#             "temperature": response["main"]["temp"],
#             "wind_speed": response["wind"]["speed"],
#             "weather": response["weather"][0]["description"]
#         }
#     return None

# # Generate synthetic grid data
# def generate_synthetic_data():
#     time_index = pd.date_range(start=datetime.now(), periods=24, freq="H")
#     return pd.DataFrame({
#         "timestamp": time_index,
#         "total_consumption_kwh": np.random.randint(200, 500, len(time_index)),
#         "grid_generation_kwh": np.random.randint(150, 400, len(time_index)),
#         "storage_usage_kwh": np.random.randint(50, 150, len(time_index)),
#         "solar_output_kw": np.random.randint(50, 150, len(time_index)),
#         "wind_output_kw": np.random.randint(30, 120, len(time_index)),
#         "grid_health": np.random.choice(["Good", "Moderate", "Critical"], len(time_index))
#     })

# # Load optimization recommendation
# def optimize_load(demand, solar, wind):
#     renewable_supply = solar + wind
#     if renewable_supply >= demand:
#         return "Grid Stable"
#     return "Use Backup or Adjust Load"

# # Export functions for use in Streamlit
# if __name__ == "__main__":
#     print("Backend ready!")



# code2


# import pandas as pd
# import numpy as np
# from datetime import datetime, timedelta
# import requests

# # Function to fetch real-time weather data
# def fetch_weather(api_key, location):
#     url = f"http://api.openweathermap.org/data/2.5/weather?q={location}&appid={api_key}&units=metric"
#     response = requests.get(url).json()
#     if response["cod"] == 200:
#         return {
#             "temperature": response["main"]["temp"],
#             "wind_speed": response["wind"]["speed"],
#             "weather": response["weather"][0]["description"]
#         }
#     return None

# # Generate synthetic data
# def generate_synthetic_data():
#     time_index = pd.date_range(start=datetime.now(), periods=24, freq="H")
#     return pd.DataFrame({
#         "timestamp": time_index,
#         "total_power_consumption_mw": np.random.randint(200, 500, len(time_index)),
#         "grid_generation_mw": np.random.randint(100, 300, len(time_index)),
#         "storage_utilization_mw": np.random.randint(50, 150, len(time_index)),
#     })

# # Generate storage data
# def generate_storage_data():
#     return {
#         "wind": 5,
#         "solar": 7,
#         "turbine": 10,
#         "total_stored_kwh": 2000
#     }

# # Export functions for use in Streamlit
# if __name__ == "__main__":
#     print("Backend ready!")


# code 3
# import pandas as pd
# import numpy as np
# from datetime import datetime, timedelta

# # Function to fetch weather data remains unchanged

# # Generate synthetic grid data
# def generate_synthetic_data():
#     time_index = pd.date_range(start=datetime.now(), periods=24, freq="H")
#     return pd.DataFrame({
#         "timestamp": time_index,
#         "power_consumption_mw": np.random.randint(50, 200, len(time_index)),
#         "grid_generation_mw": np.random.randint(30, 150, len(time_index)),
#         "storage_utilization_mw": np.random.randint(10, 50, len(time_index)),
#         "grid_health": np.random.choice(["Good", "Moderate", "Critical"], len(time_index))
#     })

# # Generate synthetic storage data
# def generate_storage_data():
#     wind_storage = np.random.randint(5, 15)
#     solar_storage = np.random.randint(7, 20)
#     turbine_storage = np.random.randint(10, 25)
#     total_storage = wind_storage + solar_storage + turbine_storage
#     return {
#         "wind_storage_mw": wind_storage,
#         "solar_storage_mw": solar_storage,
#         "turbine_storage_mw": turbine_storage,
#         "total_storage_mw": total_storage
#     }

# # Generate synthetic trade data
# def generate_trade_data():
#     countries = ["Country A", "Country B", "Country C"]
#     exports = np.random.randint(10, 50, len(countries))
#     imports = np.random.randint(5, 30, len(countries))
#     return pd.DataFrame({
#         "country": countries,
#         "exports_mw": exports,
#         "imports_mw": imports
#     })

# # Updated optimization recommendation
# def optimize_load(demand, generation, storage):
#     if generation + storage >= demand:
#         return "Grid is Stable with Current Supply"
#     elif demand - (generation + storage) < 20:
#         return "Activate Backup or Optimize Load"
#     else:
#         return "Immediate Action Required: Adjust Load or Increase Generation"

# # Export functions
# if __name__ == "__main__":
#     print("Backend ready for enhanced dashboard!")





# code 4


import pandas as pd
import numpy as np
import requests
from datetime import datetime

# Function to fetch real-time weather data
def fetch_weather(api_key, location):
    url = f"http://api.openweathermap.org/data/2.5/weather?q={location}&appid={api_key}&units=metric"
    response = requests.get(url).json()
    if response["cod"] == 200:
        return {
            "temperature": response["main"]["temp"],
            "wind_speed": response["wind"]["speed"],
            "weather": response["weather"][0]["description"]
        }
    return None

# Generate synthetic grid data
def generate_synthetic_data():
    time_index = pd.date_range(start=datetime.now(), periods=24, freq="H")
    return pd.DataFrame({
        "timestamp": time_index,
        "load_demand_kwh": np.random.randint(200, 500, len(time_index)),
        "solar_output_kw": np.random.randint(50, 150, len(time_index)),
        "wind_output_kw": np.random.randint(30, 120, len(time_index)),
        "grid_health": np.random.choice(["Good", "Moderate", "Critical"], len(time_index))
    })

# Load optimization recommendation
def optimize_load(demand, solar, wind):
    renewable_supply = solar + wind
    if renewable_supply >= demand:
        return "Grid Stable"
    return "Use Backup or Adjust Load"

if __name__ == "__main__":
    print("Backend ready!")



# code 5


# import random
# import pandas as pd 
# def fetch_data():
#     # Simulating fetching data from a database or API
#     data = {
#         'temperature': random.uniform(-10, 30),
#         'wind_speed': random.uniform(0, 20),
#         'weather_condition': random.choice(['Clear', 'Overcast Clouds', 'Thunderstorm', 'Rain']),
#         'timestamps': pd.date_range("2025-01-01", periods=10, freq='H'),
#         'total_consumption': [random.uniform(50, 100) for _ in range(10)],
#         'grid_generation': [random.uniform(30, 80) for _ in range(10)],
#         'storage_usage': [random.uniform(10, 30) for _ in range(10)],
#         'solar_storage': random.uniform(10, 30),
#         'wind_storage': random.uniform(10, 30),
#         'hydro_storage': random.uniform(10, 30),
#         'total_storage': random.uniform(50, 100),
#     }
#     return data

# def generate_recommendations(data):
#     recommendations = []
#     if data['total_consumption'][-1] > data['grid_generation'][-1]:
#         recommendations.append("Consider integrating additional renewable sources to meet the current demand.")
#     if data['storage_usage'][-1] > data['total_storage'] * 0.8:
#         recommendations.append("Energy storage is running low. Consider optimizing the grid or adding more storage.")
#     return recommendations

# def grid_health_status(data):
#     status = "Grid is operating normally."
#     if data['total_consumption'][-1] > 90:
#         status = "Warning: High consumption detected!"
#     if data['wind_speed'] > 15:
#         status = "Warning: High wind speeds, may affect wind turbine output."
#     return status

# def generate_trading_options(data):
#     if data['total_storage'] > 60:
#         return "Energy is available for export to neighboring countries."
#     else:
#         return "Energy reserves are low. Trading is not recommended at this moment."