Spaces:
Running
Running
# import pandas as pd | |
# import numpy as np | |
# import plotly.express as px | |
# from datetime import datetime, timedelta | |
# import requests | |
# # Function to fetch real-time weather data | |
# def fetch_weather(api_key, location): | |
# url = f"http://api.openweathermap.org/data/2.5/weather?q={location}&appid={api_key}&units=metric" | |
# response = requests.get(url).json() | |
# if response["cod"] == 200: | |
# return { | |
# "temperature": response["main"]["temp"], | |
# "wind_speed": response["wind"]["speed"], | |
# "weather": response["weather"][0]["description"] | |
# } | |
# return None | |
# # Generate synthetic grid data | |
# def generate_synthetic_data(): | |
# time_index = pd.date_range(start=datetime.now(), periods=24, freq="H") | |
# return pd.DataFrame({ | |
# "timestamp": time_index, | |
# "total_consumption_kwh": np.random.randint(200, 500, len(time_index)), | |
# "grid_generation_kwh": np.random.randint(150, 400, len(time_index)), | |
# "storage_usage_kwh": np.random.randint(50, 150, len(time_index)), | |
# "solar_output_kw": np.random.randint(50, 150, len(time_index)), | |
# "wind_output_kw": np.random.randint(30, 120, len(time_index)), | |
# "grid_health": np.random.choice(["Good", "Moderate", "Critical"], len(time_index)) | |
# }) | |
# # Load optimization recommendation | |
# def optimize_load(demand, solar, wind): | |
# renewable_supply = solar + wind | |
# if renewable_supply >= demand: | |
# return "Grid Stable" | |
# return "Use Backup or Adjust Load" | |
# # Export functions for use in Streamlit | |
# if __name__ == "__main__": | |
# print("Backend ready!") | |
import pandas as pd | |
import numpy as np | |
import plotly.express as px | |
from datetime import datetime, timedelta | |
import requests | |
# Function to fetch real-time weather data | |
def fetch_weather(api_key, location): | |
url = f"http://api.openweathermap.org/data/2.5/weather?q={location}&appid={api_key}&units=metric" | |
response = requests.get(url).json() | |
if response["cod"] == 200: | |
return { | |
"temperature": response["main"]["temp"], | |
"wind_speed": response["wind"]["speed"], | |
"weather": response["weather"][0]["description"] | |
} | |
return None | |
# Generate synthetic grid data in MW (for generation) and kWh (for load) | |
def generate_synthetic_data(): | |
time_index = pd.date_range(start=datetime.now(), periods=24, freq="H") | |
return pd.DataFrame({ | |
"timestamp": time_index, | |
"load_demand_mw": np.random.uniform(0.2, 0.5, len(time_index)), # Load demand in MW | |
"solar_output_mw": np.random.uniform(0.05, 0.15, len(time_index)), # Solar output in MW | |
"wind_output_mw": np.random.uniform(0.03, 0.12, len(time_index)), # Wind output in MW | |
"battery_storage_kwh": np.random.randint(100, 500, len(time_index)), # Battery storage in kWh | |
"grid_health": np.random.choice(["Good", "Moderate", "Critical"], len(time_index)) | |
}) | |
# Load optimization recommendation in MW | |
def optimize_load(demand, solar, wind): | |
renewable_supply = solar + wind | |
if renewable_supply >= demand: | |
return "Grid Stable" | |
return "Use Backup or Adjust Load" | |
# Export functions for use in Streamlit | |
if __name__ == "__main__": | |
print("Backend ready!") |