rehanafzal's picture
Update app.py
1d2c4f6 verified
raw
history blame
11.7 kB
# import streamlit as st
# import pandas as pd
# import plotly.express as px
# from app_backend import fetch_weather, generate_synthetic_data, optimize_load
# # Constants
# API_KEY = "84e26811a314599e940f343b4d5894a7"
# LOCATION = "Pakistan"
# # Sidebar
# st.sidebar.title("Smart Grid Dashboard")
# location = st.sidebar.text_input("Enter Location", LOCATION)
# # Fetch and display weather data
# weather = fetch_weather(API_KEY, location)
# if weather:
# st.sidebar.write(f"Temperature: {weather['temperature']} °C")
# st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
# st.sidebar.write(f"Weather: {weather['weather']}")
# # Main dashboard with tabs
# tabs = st.tabs(["Home", "Electricity Storage", "Electricity Trading"])
# with tabs[0]:
# st.title("Real-Time Smart Grid Dashboard")
# # Generate synthetic data
# data = generate_synthetic_data()
# # Plot total consumption, grid generation, and storage usage
# fig = px.line(data, x="timestamp", y=["total_consumption_kwh", "grid_generation_kwh", "storage_usage_kwh"],
# title="Energy Consumption, Generation, and Storage Usage Over Time",
# labels={"value": "Energy (kWh)", "variable": "Energy Source"})
# st.plotly_chart(fig)
# # Grid health overview
# st.subheader("Grid Health Overview")
# grid_health_counts = data["grid_health"].value_counts()
# st.bar_chart(grid_health_counts)
# # Optimization recommendations
# current_demand = data["total_consumption_kwh"].iloc[-1]
# current_solar = data["solar_output_kw"].iloc[-1]
# current_wind = data["wind_output_kw"].iloc[-1]
# recommendation = optimize_load(current_demand, current_solar, current_wind)
# st.subheader("Recommendations")
# st.write(f"Current Load Demand: {current_demand} kWh")
# st.write(f"Solar Output: {current_solar} kW")
# st.write(f"Wind Output: {current_wind} kW")
# st.write(f"Recommendation: {recommendation}")
# with tabs[1]:
# st.title("Energy Storage Overview")
# # Total energy stored
# total_storage = 500 # Example of total energy storage
# st.subheader(f"Total Energy Stored: {total_storage} kWh")
# # Energy storage contribution from different sources
# st.subheader("Energy Storage Contributions")
# energy_sources = pd.DataFrame({
# "Source": ["Wind", "Solar", "Turbine"],
# "Energy (kW/min)": [5, 7, 10]
# })
# st.bar_chart(energy_sources.set_index("Source"))
# # Show energy storage status with a rounded circle
# st.subheader("Energy Storage Circle")
# st.markdown("Energy storage is a combination of contributions from different renewable sources.")
# # Visualization of energy storage circle using Plotly
# storage_data = {
# "Source": ["Wind", "Solar", "Turbine"],
# "Energy": [5, 7, 10],
# }
# storage_df = pd.DataFrame(storage_data)
# fig = px.pie(storage_df, names="Source", values="Energy", title="Energy Storage Sources")
# st.plotly_chart(fig)
# with tabs[2]:
# st.title("Energy Trading Overview")
# # Energy cubes
# st.subheader("Energy Cubes Stored")
# energy_cubes = pd.DataFrame({
# "Country": ["China", "Sri Lanka", "Bangladesh"],
# "Energy (kWh)": [100, 200, 300],
# "Shareable": [True, True, False]
# })
# # Displaying the energy cubes in a grid
# st.write("Stored energy can be shared with other countries.")
# st.dataframe(energy_cubes)
# # Visualization of energy that can be shared
# st.subheader("Energy Trading Visualization")
# st.markdown("The following energy amounts are available for sharing with different countries.")
# trading_fig = px.bar(energy_cubes, x="Country", y="Energy (kWh)", color="Shareable", title="Energy Trading")
# st.plotly_chart(trading_fig)
# code 2
# import streamlit as st
# import pandas as pd
# import plotly.graph_objects as go
# from app_backend import fetch_weather, generate_synthetic_data, generate_storage_data
# # Constants
# API_KEY = "84e26811a314599e940f343b4d5894a7"
# DEFAULT_LOCATION = "Pakistan"
# # Sidebar for location and weather data
# st.sidebar.title("Smart Grid Dashboard")
# location = st.sidebar.text_input("Enter Location", DEFAULT_LOCATION)
# weather = fetch_weather(API_KEY, location)
# if weather:
# st.sidebar.write(f"Temperature: {weather['temperature']} °C")
# st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
# st.sidebar.write(f"Weather: {weather['weather']}")
# # Main interface
# st.title("Real-Time Smart Grid Dashboard")
# # Tabs
# tabs = st.tabs(["Home", "Power Storage", "Electricity Trade Management"])
# # Home Tab
# with tabs[0]:
# st.header("Overview: Power and Energy Usage")
# # Fetch synthetic data
# data = generate_synthetic_data()
# # Line Graph for Power Consumption, Generation, and Storage
# fig = go.Figure()
# fig.add_trace(go.Scatter(
# x=data["timestamp"],
# y=data["total_power_consumption_mw"],
# mode='lines',
# name="Total Power Consumption (MW)",
# line=dict(color="red")
# ))
# fig.add_trace(go.Scatter(
# x=data["timestamp"],
# y=data["grid_generation_mw"],
# mode='lines',
# name="Grid Generation (MW)",
# line=dict(color="green")
# ))
# fig.add_trace(go.Scatter(
# x=data["timestamp"],
# y=data["storage_utilization_mw"],
# mode='lines',
# name="Storage Utilization (MW)",
# line=dict(color="blue")
# ))
# fig.update_layout(title="Power and Energy Trends", xaxis_title="Time", yaxis_title="Power (MW)")
# st.plotly_chart(fig)
# # Storage Tab
# with tabs[1]:
# st.header("Energy Storage Overview")
# storage_data = generate_storage_data()
# st.write(f"**Total Energy Stored:** {storage_data['total_stored_kwh']} kWh")
# # Circular storage breakdown
# sources = ["Wind", "Solar", "Turbine"]
# values = [storage_data["wind"], storage_data["solar"], storage_data["turbine"]]
# fig = go.Figure(data=[go.Pie(labels=sources, values=values, hole=.4)])
# fig.update_layout(title="Energy Storage Breakdown")
# st.plotly_chart(fig)
# # Electricity Trade Management Tab
# with tabs[2]:
# st.header("Electricity Trade Management")
# # Sample trade data
# trade_data = {
# "Country": ["Srilanka", "China", "Bangladesh"],
# "Energy Exported (MW)": [50, 30, 70],
# "Energy Imported (MW)": [20, 40, 10],
# }
# trade_df = pd.DataFrame(trade_data)
# st.subheader("Trade Details")
# st.write(trade_df)
# # Visualization
# fig = go.Figure()
# fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Exported (MW)"], name="Exported", marker_color='purple'))
# fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Imported (MW)"], name="Imported", marker_color='orange'))
# fig.update_layout(title="Energy Trade", barmode='group')
# st.plotly_chart(fig)
# code 3
import streamlit as st
import pandas as pd
import plotly.graph_objects as go
from app_backend import fetch_weather, generate_synthetic_data, generate_storage_data
# Constants
API_KEY = "84e26811a314599e940f343b4d5894a7"
DEFAULT_LOCATION = "pakistan"
# Sidebar for location and weather data
st.sidebar.title("Smart Grid Dashboard")
location = st.sidebar.text_input("Enter Location", DEFAULT_LOCATION)
weather = fetch_weather(API_KEY, location)
if weather:
st.sidebar.write(f"Temperature: {weather['temperature']} °C")
st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
st.sidebar.write(f"Weather: {weather['weather']}")
# Main interface
st.title("Real-Time Smart Grid Dashboard")
# Tabs
tabs = st.tabs(["Home", "Storage", "Electricity Trade Management"])
# Home Tab
with tabs[0]:
st.header("Overview: Power and Energy Usage")
# Fetch synthetic data
data = generate_synthetic_data()
# Line Graph for Power Consumption, Generation, and Storage
fig = go.Figure()
fig.add_trace(go.Scatter(
x=data["timestamp"],
y=data["total_power_consumption_mw"],
mode='lines',
name="Total Power Consumption (MW)",
line=dict(color="red")
))
fig.add_trace(go.Scatter(
x=data["timestamp"],
y=data["grid_generation_mw"],
mode='lines',
name="Grid Generation (MW)",
line=dict(color="green")
))
fig.add_trace(go.Scatter(
x=data["timestamp"],
y=data["storage_utilization_mw"],
mode='lines',
name="Storage Utilization (MW)",
line=dict(color="blue")
))
fig.update_layout(title="Power and Energy Trends", xaxis_title="Time", yaxis_title="Power (MW)")
st.plotly_chart(fig)
# Grid Health Indicator
st.subheader("Grid Health Status")
grid_health = "Stable" if data["grid_generation_mw"].mean() >= data["total_power_consumption_mw"].mean() else "Critical"
st.write(f"**Grid Health:** {grid_health}")
# AI Recommendations
st.subheader("AI Recommendations")
recommendations = [
"Increase solar panel efficiency by 10% for peak hours.",
"Optimize wind turbine alignment based on real-time wind data.",
"Store excess energy during low-demand periods for future use.",
"Improve grid stability by distributing load dynamically across sectors.",
]
for rec in recommendations:
st.write(f"- {rec}")
# Storage Tab
with tabs[1]:
st.header("Energy Storage Overview")
storage_data = generate_storage_data()
# Individual Circles for Wind, Solar, and Turbine
st.subheader("Energy Contributions")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Wind Energy", f"{storage_data['wind']} MW/min")
with col2:
st.metric("Solar Energy", f"{storage_data['solar']} MW/min")
with col3:
st.metric("Turbine Energy", f"{storage_data['turbine']} MW/min")
# Central Grid Storage Visualization
st.subheader("Total Energy Stored in Grid")
fig = go.Figure()
fig.add_trace(go.Scatter(x=[0], y=[0], mode='markers+text', text=["Grid"], marker=dict(size=70, color="blue")))
fig.add_trace(go.Scatter(
x=[-1, 1, 0],
y=[1, 1, -1],
mode='markers+text',
text=["Wind", "Solar", "Turbine"],
marker=dict(size=50, color=["green", "yellow", "orange"])
))
fig.add_trace(go.Scatter(
x=[-0.5, 0.5, 0],
y=[0.5, 0.5, -0.5],
mode="lines",
line=dict(width=3, color="gray"),
))
fig.update_layout(
title="Energy Storage Visualization",
xaxis=dict(visible=False),
yaxis=dict(visible=False),
showlegend=False
)
st.plotly_chart(fig)
st.write(f"**Total Energy Stored:** {storage_data['total_stored_kwh']} kWh")
# Electricity Trade Management Tab
with tabs[2]:
st.header("Electricity Trade Management")
# Sample trade data
trade_data = {
"Country": ["Country A", "Country B", "Country C"],
"Energy Exported (MW)": [50, 30, 70],
"Energy Imported (MW)": [20, 40, 10],
}
trade_df = pd.DataFrame(trade_data)
st.subheader("Trade Details")
st.write(trade_df)
# Visualization
fig = go.Figure()
fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Exported (MW)"], name="Exported", marker_color='purple'))
fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Imported (MW)"], name="Imported", marker_color='orange'))
fig.update_layout(title="Energy Trade", barmode='group')
st.plotly_chart(fig)