File size: 11,698 Bytes
c238d7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d2c4f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c238d7d
fcb4f92
 
c238d7d
 
e60d54e
fcb4f92
 
1d2c4f6
e60d54e
c238d7d
fcb4f92
c238d7d
fcb4f92
c238d7d
fcb4f92
 
 
 
e60d54e
c238d7d
 
e60d54e
c238d7d
1d2c4f6
e60d54e
c238d7d
 
 
 
 
fcb4f92
e60d54e
c238d7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcb4f92
e60d54e
1d2c4f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c238d7d
fcb4f92
c238d7d
 
 
1d2c4f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcb4f92
e60d54e
1d2c4f6
 
c238d7d
fcb4f92
c238d7d
e60d54e
c238d7d
 
1d2c4f6
c238d7d
 
 
 
e60d54e
c238d7d
 
e60d54e
c238d7d
 
 
 
 
 
e60d54e
43bb94b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# import streamlit as st
# import pandas as pd
# import plotly.express as px
# from app_backend import fetch_weather, generate_synthetic_data, optimize_load

# # Constants
# API_KEY = "84e26811a314599e940f343b4d5894a7"
# LOCATION = "Pakistan"

# # Sidebar
# st.sidebar.title("Smart Grid Dashboard")
# location = st.sidebar.text_input("Enter Location", LOCATION)

# # Fetch and display weather data
# weather = fetch_weather(API_KEY, location)
# if weather:
#     st.sidebar.write(f"Temperature: {weather['temperature']} °C")
#     st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
#     st.sidebar.write(f"Weather: {weather['weather']}")

# # Main dashboard with tabs
# tabs = st.tabs(["Home", "Electricity Storage", "Electricity Trading"])

# with tabs[0]:
#     st.title("Real-Time Smart Grid Dashboard")

#     # Generate synthetic data
#     data = generate_synthetic_data()

#     # Plot total consumption, grid generation, and storage usage
#     fig = px.line(data, x="timestamp", y=["total_consumption_kwh", "grid_generation_kwh", "storage_usage_kwh"],
#                   title="Energy Consumption, Generation, and Storage Usage Over Time",
#                   labels={"value": "Energy (kWh)", "variable": "Energy Source"})
#     st.plotly_chart(fig)

#     # Grid health overview
#     st.subheader("Grid Health Overview")
#     grid_health_counts = data["grid_health"].value_counts()
#     st.bar_chart(grid_health_counts)

#     # Optimization recommendations
#     current_demand = data["total_consumption_kwh"].iloc[-1]
#     current_solar = data["solar_output_kw"].iloc[-1]
#     current_wind = data["wind_output_kw"].iloc[-1]
#     recommendation = optimize_load(current_demand, current_solar, current_wind)

#     st.subheader("Recommendations")
#     st.write(f"Current Load Demand: {current_demand} kWh")
#     st.write(f"Solar Output: {current_solar} kW")
#     st.write(f"Wind Output: {current_wind} kW")
#     st.write(f"Recommendation: {recommendation}")

# with tabs[1]:
#     st.title("Energy Storage Overview")

#     # Total energy stored
#     total_storage = 500  # Example of total energy storage
#     st.subheader(f"Total Energy Stored: {total_storage} kWh")

#     # Energy storage contribution from different sources
#     st.subheader("Energy Storage Contributions")
#     energy_sources = pd.DataFrame({
#         "Source": ["Wind", "Solar", "Turbine"],
#         "Energy (kW/min)": [5, 7, 10]
#     })
#     st.bar_chart(energy_sources.set_index("Source"))

#     # Show energy storage status with a rounded circle
#     st.subheader("Energy Storage Circle")
#     st.markdown("Energy storage is a combination of contributions from different renewable sources.")

#     # Visualization of energy storage circle using Plotly
#     storage_data = {
#         "Source": ["Wind", "Solar", "Turbine"],
#         "Energy": [5, 7, 10],
#     }
#     storage_df = pd.DataFrame(storage_data)
#     fig = px.pie(storage_df, names="Source", values="Energy", title="Energy Storage Sources")
#     st.plotly_chart(fig)

# with tabs[2]:
#     st.title("Energy Trading Overview")

#     # Energy cubes
#     st.subheader("Energy Cubes Stored")
#     energy_cubes = pd.DataFrame({
#         "Country": ["China", "Sri Lanka", "Bangladesh"],
#         "Energy (kWh)": [100, 200, 300],
#         "Shareable": [True, True, False]
#     })

#     # Displaying the energy cubes in a grid
#     st.write("Stored energy can be shared with other countries.")
#     st.dataframe(energy_cubes)

#     # Visualization of energy that can be shared
#     st.subheader("Energy Trading Visualization")
#     st.markdown("The following energy amounts are available for sharing with different countries.")
#     trading_fig = px.bar(energy_cubes, x="Country", y="Energy (kWh)", color="Shareable", title="Energy Trading")
#     st.plotly_chart(trading_fig)


# code 2


# import streamlit as st
# import pandas as pd
# import plotly.graph_objects as go
# from app_backend import fetch_weather, generate_synthetic_data, generate_storage_data

# # Constants
# API_KEY = "84e26811a314599e940f343b4d5894a7"
# DEFAULT_LOCATION = "Pakistan"

# # Sidebar for location and weather data
# st.sidebar.title("Smart Grid Dashboard")
# location = st.sidebar.text_input("Enter Location", DEFAULT_LOCATION)
# weather = fetch_weather(API_KEY, location)

# if weather:
#     st.sidebar.write(f"Temperature: {weather['temperature']} °C")
#     st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
#     st.sidebar.write(f"Weather: {weather['weather']}")

# # Main interface
# st.title("Real-Time Smart Grid Dashboard")

# # Tabs
# tabs = st.tabs(["Home", "Power Storage", "Electricity Trade Management"])

# # Home Tab
# with tabs[0]:
#     st.header("Overview: Power and Energy Usage")
    
#     # Fetch synthetic data
#     data = generate_synthetic_data()

#     # Line Graph for Power Consumption, Generation, and Storage
#     fig = go.Figure()
#     fig.add_trace(go.Scatter(
#         x=data["timestamp"],
#         y=data["total_power_consumption_mw"],
#         mode='lines',
#         name="Total Power Consumption (MW)",
#         line=dict(color="red")
#     ))
#     fig.add_trace(go.Scatter(
#         x=data["timestamp"],
#         y=data["grid_generation_mw"],
#         mode='lines',
#         name="Grid Generation (MW)",
#         line=dict(color="green")
#     ))
#     fig.add_trace(go.Scatter(
#         x=data["timestamp"],
#         y=data["storage_utilization_mw"],
#         mode='lines',
#         name="Storage Utilization (MW)",
#         line=dict(color="blue")
#     ))
#     fig.update_layout(title="Power and Energy Trends", xaxis_title="Time", yaxis_title="Power (MW)")
#     st.plotly_chart(fig)

# # Storage Tab
# with tabs[1]:
#     st.header("Energy Storage Overview")
#     storage_data = generate_storage_data()

#     st.write(f"**Total Energy Stored:** {storage_data['total_stored_kwh']} kWh")
    
#     # Circular storage breakdown
#     sources = ["Wind", "Solar", "Turbine"]
#     values = [storage_data["wind"], storage_data["solar"], storage_data["turbine"]]
    
#     fig = go.Figure(data=[go.Pie(labels=sources, values=values, hole=.4)])
#     fig.update_layout(title="Energy Storage Breakdown")
#     st.plotly_chart(fig)

# # Electricity Trade Management Tab
# with tabs[2]:
#     st.header("Electricity Trade Management")

#     # Sample trade data
#     trade_data = {
#         "Country": ["Srilanka", "China", "Bangladesh"],
#         "Energy Exported (MW)": [50, 30, 70],
#         "Energy Imported (MW)": [20, 40, 10],
#     }
#     trade_df = pd.DataFrame(trade_data)

#     st.subheader("Trade Details")
#     st.write(trade_df)

#     # Visualization
#     fig = go.Figure()
#     fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Exported (MW)"], name="Exported", marker_color='purple'))
#     fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Imported (MW)"], name="Imported", marker_color='orange'))
#     fig.update_layout(title="Energy Trade", barmode='group')
#     st.plotly_chart(fig)


# code 3


import streamlit as st
import pandas as pd
import plotly.graph_objects as go
from app_backend import fetch_weather, generate_synthetic_data, generate_storage_data

# Constants
API_KEY = "84e26811a314599e940f343b4d5894a7"
DEFAULT_LOCATION = "pakistan"

# Sidebar for location and weather data
st.sidebar.title("Smart Grid Dashboard")
location = st.sidebar.text_input("Enter Location", DEFAULT_LOCATION)
weather = fetch_weather(API_KEY, location)

if weather:
    st.sidebar.write(f"Temperature: {weather['temperature']} °C")
    st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
    st.sidebar.write(f"Weather: {weather['weather']}")

# Main interface
st.title("Real-Time Smart Grid Dashboard")

# Tabs
tabs = st.tabs(["Home", "Storage", "Electricity Trade Management"])

# Home Tab
with tabs[0]:
    st.header("Overview: Power and Energy Usage")
    
    # Fetch synthetic data
    data = generate_synthetic_data()

    # Line Graph for Power Consumption, Generation, and Storage
    fig = go.Figure()
    fig.add_trace(go.Scatter(
        x=data["timestamp"],
        y=data["total_power_consumption_mw"],
        mode='lines',
        name="Total Power Consumption (MW)",
        line=dict(color="red")
    ))
    fig.add_trace(go.Scatter(
        x=data["timestamp"],
        y=data["grid_generation_mw"],
        mode='lines',
        name="Grid Generation (MW)",
        line=dict(color="green")
    ))
    fig.add_trace(go.Scatter(
        x=data["timestamp"],
        y=data["storage_utilization_mw"],
        mode='lines',
        name="Storage Utilization (MW)",
        line=dict(color="blue")
    ))
    fig.update_layout(title="Power and Energy Trends", xaxis_title="Time", yaxis_title="Power (MW)")
    st.plotly_chart(fig)

    # Grid Health Indicator
    st.subheader("Grid Health Status")
    grid_health = "Stable" if data["grid_generation_mw"].mean() >= data["total_power_consumption_mw"].mean() else "Critical"
    st.write(f"**Grid Health:** {grid_health}")

    # AI Recommendations
    st.subheader("AI Recommendations")
    recommendations = [
        "Increase solar panel efficiency by 10% for peak hours.",
        "Optimize wind turbine alignment based on real-time wind data.",
        "Store excess energy during low-demand periods for future use.",
        "Improve grid stability by distributing load dynamically across sectors.",
    ]
    for rec in recommendations:
        st.write(f"- {rec}")

# Storage Tab
with tabs[1]:
    st.header("Energy Storage Overview")
    storage_data = generate_storage_data()

    # Individual Circles for Wind, Solar, and Turbine
    st.subheader("Energy Contributions")
    col1, col2, col3 = st.columns(3)
    with col1:
        st.metric("Wind Energy", f"{storage_data['wind']} MW/min")
    with col2:
        st.metric("Solar Energy", f"{storage_data['solar']} MW/min")
    with col3:
        st.metric("Turbine Energy", f"{storage_data['turbine']} MW/min")

    # Central Grid Storage Visualization
    st.subheader("Total Energy Stored in Grid")
    fig = go.Figure()
    fig.add_trace(go.Scatter(x=[0], y=[0], mode='markers+text', text=["Grid"], marker=dict(size=70, color="blue")))
    fig.add_trace(go.Scatter(
        x=[-1, 1, 0],
        y=[1, 1, -1],
        mode='markers+text',
        text=["Wind", "Solar", "Turbine"],
        marker=dict(size=50, color=["green", "yellow", "orange"])
    ))
    fig.add_trace(go.Scatter(
        x=[-0.5, 0.5, 0],
        y=[0.5, 0.5, -0.5],
        mode="lines",
        line=dict(width=3, color="gray"),
    ))
    fig.update_layout(
        title="Energy Storage Visualization",
        xaxis=dict(visible=False),
        yaxis=dict(visible=False),
        showlegend=False
    )
    st.plotly_chart(fig)

    st.write(f"**Total Energy Stored:** {storage_data['total_stored_kwh']} kWh")

# Electricity Trade Management Tab
with tabs[2]:
    st.header("Electricity Trade Management")

    # Sample trade data
    trade_data = {
        "Country": ["Country A", "Country B", "Country C"],
        "Energy Exported (MW)": [50, 30, 70],
        "Energy Imported (MW)": [20, 40, 10],
    }
    trade_df = pd.DataFrame(trade_data)

    st.subheader("Trade Details")
    st.write(trade_df)

    # Visualization
    fig = go.Figure()
    fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Exported (MW)"], name="Exported", marker_color='purple'))
    fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Imported (MW)"], name="Imported", marker_color='orange'))
    fig.update_layout(title="Energy Trade", barmode='group')
    st.plotly_chart(fig)