Spaces:
Sleeping
Sleeping
File size: 11,698 Bytes
c238d7d 1d2c4f6 c238d7d fcb4f92 c238d7d e60d54e fcb4f92 1d2c4f6 e60d54e c238d7d fcb4f92 c238d7d fcb4f92 c238d7d fcb4f92 e60d54e c238d7d e60d54e c238d7d 1d2c4f6 e60d54e c238d7d fcb4f92 e60d54e c238d7d fcb4f92 e60d54e 1d2c4f6 c238d7d fcb4f92 c238d7d 1d2c4f6 fcb4f92 e60d54e 1d2c4f6 c238d7d fcb4f92 c238d7d e60d54e c238d7d 1d2c4f6 c238d7d e60d54e c238d7d e60d54e c238d7d e60d54e 43bb94b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
# import streamlit as st
# import pandas as pd
# import plotly.express as px
# from app_backend import fetch_weather, generate_synthetic_data, optimize_load
# # Constants
# API_KEY = "84e26811a314599e940f343b4d5894a7"
# LOCATION = "Pakistan"
# # Sidebar
# st.sidebar.title("Smart Grid Dashboard")
# location = st.sidebar.text_input("Enter Location", LOCATION)
# # Fetch and display weather data
# weather = fetch_weather(API_KEY, location)
# if weather:
# st.sidebar.write(f"Temperature: {weather['temperature']} °C")
# st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
# st.sidebar.write(f"Weather: {weather['weather']}")
# # Main dashboard with tabs
# tabs = st.tabs(["Home", "Electricity Storage", "Electricity Trading"])
# with tabs[0]:
# st.title("Real-Time Smart Grid Dashboard")
# # Generate synthetic data
# data = generate_synthetic_data()
# # Plot total consumption, grid generation, and storage usage
# fig = px.line(data, x="timestamp", y=["total_consumption_kwh", "grid_generation_kwh", "storage_usage_kwh"],
# title="Energy Consumption, Generation, and Storage Usage Over Time",
# labels={"value": "Energy (kWh)", "variable": "Energy Source"})
# st.plotly_chart(fig)
# # Grid health overview
# st.subheader("Grid Health Overview")
# grid_health_counts = data["grid_health"].value_counts()
# st.bar_chart(grid_health_counts)
# # Optimization recommendations
# current_demand = data["total_consumption_kwh"].iloc[-1]
# current_solar = data["solar_output_kw"].iloc[-1]
# current_wind = data["wind_output_kw"].iloc[-1]
# recommendation = optimize_load(current_demand, current_solar, current_wind)
# st.subheader("Recommendations")
# st.write(f"Current Load Demand: {current_demand} kWh")
# st.write(f"Solar Output: {current_solar} kW")
# st.write(f"Wind Output: {current_wind} kW")
# st.write(f"Recommendation: {recommendation}")
# with tabs[1]:
# st.title("Energy Storage Overview")
# # Total energy stored
# total_storage = 500 # Example of total energy storage
# st.subheader(f"Total Energy Stored: {total_storage} kWh")
# # Energy storage contribution from different sources
# st.subheader("Energy Storage Contributions")
# energy_sources = pd.DataFrame({
# "Source": ["Wind", "Solar", "Turbine"],
# "Energy (kW/min)": [5, 7, 10]
# })
# st.bar_chart(energy_sources.set_index("Source"))
# # Show energy storage status with a rounded circle
# st.subheader("Energy Storage Circle")
# st.markdown("Energy storage is a combination of contributions from different renewable sources.")
# # Visualization of energy storage circle using Plotly
# storage_data = {
# "Source": ["Wind", "Solar", "Turbine"],
# "Energy": [5, 7, 10],
# }
# storage_df = pd.DataFrame(storage_data)
# fig = px.pie(storage_df, names="Source", values="Energy", title="Energy Storage Sources")
# st.plotly_chart(fig)
# with tabs[2]:
# st.title("Energy Trading Overview")
# # Energy cubes
# st.subheader("Energy Cubes Stored")
# energy_cubes = pd.DataFrame({
# "Country": ["China", "Sri Lanka", "Bangladesh"],
# "Energy (kWh)": [100, 200, 300],
# "Shareable": [True, True, False]
# })
# # Displaying the energy cubes in a grid
# st.write("Stored energy can be shared with other countries.")
# st.dataframe(energy_cubes)
# # Visualization of energy that can be shared
# st.subheader("Energy Trading Visualization")
# st.markdown("The following energy amounts are available for sharing with different countries.")
# trading_fig = px.bar(energy_cubes, x="Country", y="Energy (kWh)", color="Shareable", title="Energy Trading")
# st.plotly_chart(trading_fig)
# code 2
# import streamlit as st
# import pandas as pd
# import plotly.graph_objects as go
# from app_backend import fetch_weather, generate_synthetic_data, generate_storage_data
# # Constants
# API_KEY = "84e26811a314599e940f343b4d5894a7"
# DEFAULT_LOCATION = "Pakistan"
# # Sidebar for location and weather data
# st.sidebar.title("Smart Grid Dashboard")
# location = st.sidebar.text_input("Enter Location", DEFAULT_LOCATION)
# weather = fetch_weather(API_KEY, location)
# if weather:
# st.sidebar.write(f"Temperature: {weather['temperature']} °C")
# st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
# st.sidebar.write(f"Weather: {weather['weather']}")
# # Main interface
# st.title("Real-Time Smart Grid Dashboard")
# # Tabs
# tabs = st.tabs(["Home", "Power Storage", "Electricity Trade Management"])
# # Home Tab
# with tabs[0]:
# st.header("Overview: Power and Energy Usage")
# # Fetch synthetic data
# data = generate_synthetic_data()
# # Line Graph for Power Consumption, Generation, and Storage
# fig = go.Figure()
# fig.add_trace(go.Scatter(
# x=data["timestamp"],
# y=data["total_power_consumption_mw"],
# mode='lines',
# name="Total Power Consumption (MW)",
# line=dict(color="red")
# ))
# fig.add_trace(go.Scatter(
# x=data["timestamp"],
# y=data["grid_generation_mw"],
# mode='lines',
# name="Grid Generation (MW)",
# line=dict(color="green")
# ))
# fig.add_trace(go.Scatter(
# x=data["timestamp"],
# y=data["storage_utilization_mw"],
# mode='lines',
# name="Storage Utilization (MW)",
# line=dict(color="blue")
# ))
# fig.update_layout(title="Power and Energy Trends", xaxis_title="Time", yaxis_title="Power (MW)")
# st.plotly_chart(fig)
# # Storage Tab
# with tabs[1]:
# st.header("Energy Storage Overview")
# storage_data = generate_storage_data()
# st.write(f"**Total Energy Stored:** {storage_data['total_stored_kwh']} kWh")
# # Circular storage breakdown
# sources = ["Wind", "Solar", "Turbine"]
# values = [storage_data["wind"], storage_data["solar"], storage_data["turbine"]]
# fig = go.Figure(data=[go.Pie(labels=sources, values=values, hole=.4)])
# fig.update_layout(title="Energy Storage Breakdown")
# st.plotly_chart(fig)
# # Electricity Trade Management Tab
# with tabs[2]:
# st.header("Electricity Trade Management")
# # Sample trade data
# trade_data = {
# "Country": ["Srilanka", "China", "Bangladesh"],
# "Energy Exported (MW)": [50, 30, 70],
# "Energy Imported (MW)": [20, 40, 10],
# }
# trade_df = pd.DataFrame(trade_data)
# st.subheader("Trade Details")
# st.write(trade_df)
# # Visualization
# fig = go.Figure()
# fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Exported (MW)"], name="Exported", marker_color='purple'))
# fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Imported (MW)"], name="Imported", marker_color='orange'))
# fig.update_layout(title="Energy Trade", barmode='group')
# st.plotly_chart(fig)
# code 3
import streamlit as st
import pandas as pd
import plotly.graph_objects as go
from app_backend import fetch_weather, generate_synthetic_data, generate_storage_data
# Constants
API_KEY = "84e26811a314599e940f343b4d5894a7"
DEFAULT_LOCATION = "pakistan"
# Sidebar for location and weather data
st.sidebar.title("Smart Grid Dashboard")
location = st.sidebar.text_input("Enter Location", DEFAULT_LOCATION)
weather = fetch_weather(API_KEY, location)
if weather:
st.sidebar.write(f"Temperature: {weather['temperature']} °C")
st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
st.sidebar.write(f"Weather: {weather['weather']}")
# Main interface
st.title("Real-Time Smart Grid Dashboard")
# Tabs
tabs = st.tabs(["Home", "Storage", "Electricity Trade Management"])
# Home Tab
with tabs[0]:
st.header("Overview: Power and Energy Usage")
# Fetch synthetic data
data = generate_synthetic_data()
# Line Graph for Power Consumption, Generation, and Storage
fig = go.Figure()
fig.add_trace(go.Scatter(
x=data["timestamp"],
y=data["total_power_consumption_mw"],
mode='lines',
name="Total Power Consumption (MW)",
line=dict(color="red")
))
fig.add_trace(go.Scatter(
x=data["timestamp"],
y=data["grid_generation_mw"],
mode='lines',
name="Grid Generation (MW)",
line=dict(color="green")
))
fig.add_trace(go.Scatter(
x=data["timestamp"],
y=data["storage_utilization_mw"],
mode='lines',
name="Storage Utilization (MW)",
line=dict(color="blue")
))
fig.update_layout(title="Power and Energy Trends", xaxis_title="Time", yaxis_title="Power (MW)")
st.plotly_chart(fig)
# Grid Health Indicator
st.subheader("Grid Health Status")
grid_health = "Stable" if data["grid_generation_mw"].mean() >= data["total_power_consumption_mw"].mean() else "Critical"
st.write(f"**Grid Health:** {grid_health}")
# AI Recommendations
st.subheader("AI Recommendations")
recommendations = [
"Increase solar panel efficiency by 10% for peak hours.",
"Optimize wind turbine alignment based on real-time wind data.",
"Store excess energy during low-demand periods for future use.",
"Improve grid stability by distributing load dynamically across sectors.",
]
for rec in recommendations:
st.write(f"- {rec}")
# Storage Tab
with tabs[1]:
st.header("Energy Storage Overview")
storage_data = generate_storage_data()
# Individual Circles for Wind, Solar, and Turbine
st.subheader("Energy Contributions")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Wind Energy", f"{storage_data['wind']} MW/min")
with col2:
st.metric("Solar Energy", f"{storage_data['solar']} MW/min")
with col3:
st.metric("Turbine Energy", f"{storage_data['turbine']} MW/min")
# Central Grid Storage Visualization
st.subheader("Total Energy Stored in Grid")
fig = go.Figure()
fig.add_trace(go.Scatter(x=[0], y=[0], mode='markers+text', text=["Grid"], marker=dict(size=70, color="blue")))
fig.add_trace(go.Scatter(
x=[-1, 1, 0],
y=[1, 1, -1],
mode='markers+text',
text=["Wind", "Solar", "Turbine"],
marker=dict(size=50, color=["green", "yellow", "orange"])
))
fig.add_trace(go.Scatter(
x=[-0.5, 0.5, 0],
y=[0.5, 0.5, -0.5],
mode="lines",
line=dict(width=3, color="gray"),
))
fig.update_layout(
title="Energy Storage Visualization",
xaxis=dict(visible=False),
yaxis=dict(visible=False),
showlegend=False
)
st.plotly_chart(fig)
st.write(f"**Total Energy Stored:** {storage_data['total_stored_kwh']} kWh")
# Electricity Trade Management Tab
with tabs[2]:
st.header("Electricity Trade Management")
# Sample trade data
trade_data = {
"Country": ["Country A", "Country B", "Country C"],
"Energy Exported (MW)": [50, 30, 70],
"Energy Imported (MW)": [20, 40, 10],
}
trade_df = pd.DataFrame(trade_data)
st.subheader("Trade Details")
st.write(trade_df)
# Visualization
fig = go.Figure()
fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Exported (MW)"], name="Exported", marker_color='purple'))
fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Imported (MW)"], name="Imported", marker_color='orange'))
fig.update_layout(title="Energy Trade", barmode='group')
st.plotly_chart(fig)
|