Spaces:
Runtime error
Runtime error
File size: 4,919 Bytes
b308128 937be2f 7f877a9 b308128 8eb0f9a 7eaa7b0 937be2f 04fc021 49c7ae8 35e0ec8 edb0bcd 35e0ec8 edb0bcd 35e0ec8 a450a5f 49c7ae8 35e0ec8 49c7ae8 35e0ec8 a450a5f 35e0ec8 85bd1c9 35e0ec8 8eb0f9a 35e0ec8 8eb0f9a ac4f141 49c7ae8 35e0ec8 a450a5f 49c7ae8 35e0ec8 5e8be56 8c245db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
# Load the Vicuna 7B v1.3 LMSys model and tokenizer
model_name = "lmsys/vicuna-7b-v1.3"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
## Task 1
# msg = template_all.format(text)
template_all = '''Output the <Noun, Verb, Adjective, Adverb, Preposition/Subord, Coordinating Conjunction, Cardinal Number, Determiner, Noun Phrase, Verb Phrase, Adjective Phrase, Adverb Phrase, Preposition Phrase, Conjunction Phrase, Coordinate Phrase, Quantitave Phrase, Complex Nominal, Clause, Dependent Clause, Fragment Clause, T-unit, Complex T-unit, Fragment T-unit> in the following sentence without additional text in json format: "{}"'''
# msg = template_single.format(ents_prompt[eid], text)
template_single = '''Output any <{}> in the following sentence one per line without additional text: "{}"'''
## Task 2
prompt2_pos = '''POS tag the following sentence using Universal POS tag set without generating additional text: {}'''
prompt2_chunk = '''Do sentence chunking for the following sentence as in CoNLL 2000 shared task without generating addtional text: {}'''
## Task 3
with gr.Blocks() as demo:
gr.Markdown("# LLM Evaluator With Linguistic Scrutiny")
with gr.Tab("POS"):
gr.Markdown(" Description ")
prompt_POS = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter")
gr.Markdown("Strategy 1 QA-Based Prompting")
with gr.Row():
vicuna_S1_chatbot_POS = gr.Chatbot(label="vicuna-7b")
llama_S1_chatbot_POS = gr.Chatbot(label="llama-7b")
gpt_S1_chatbot_POS = gr.Chatbot(label="gpt-3.5")
clear = gr.ClearButton([prompt_POS, vicuna_S1_chatbot_POS])
gr.Markdown("Strategy 2 Instruction-Based Prompting")
with gr.Row():
vicuna_S2_chatbot_POS = gr.Chatbot(label="vicuna-7b")
llama_S2_chatbot_POS = gr.Chatbot(label="llama-7b")
gpt_S2_chatbot_POS = gr.Chatbot(label="gpt-3.5")
clear = gr.ClearButton([prompt_POS, vicuna_S2_chatbot_POS])
gr.Markdown("Strategy 3 Structured Prompting")
with gr.Row():
vicuna_S3_chatbot_POS = gr.Chatbot(label="vicuna-7b")
llama_S3_chatbot_POS = gr.Chatbot(label="llama-7b")
gpt_S3_chatbot_POS = gr.Chatbot(label="gpt-3.5")
clear = gr.ClearButton([prompt_POS, vicuna_S3_chatbot_POS])
with gr.Tab("Chunk"):
gr.Markdown(" Description ")
prompt_CHUNK = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter")
gr.Markdown("Strategy 1 QA")
with gr.Row():
vicuna_S1_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b")
llama_S1_chatbot_CHUNK = gr.Chatbot(label="llama-7b")
gpt_S1_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5")
clear = gr.ClearButton([prompt_CHUNK, vicuna_S1_chatbot_CHUNK])
gr.Markdown("Strategy 2 Instruction")
with gr.Row():
vicuna_S2_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b")
llama_S2_chatbot_CHUNK = gr.Chatbot(label="llama-7b")
gpt_S2_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5")
clear = gr.ClearButton([prompt_CHUNK, vicuna_S2_chatbot_CHUNK])
gr.Markdown("Strategy 3 Structured Prompting")
with gr.Row():
vicuna_S3_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b")
llama_S3_chatbot_CHUNK = gr.Chatbot(label="llama-7b")
gpt_S3_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5")
clear = gr.ClearButton([prompt_CHUNK, vicuna_S3_chatbot_CHUNK])
def respond(message, chat_history):
input_ids = tokenizer.encode(message, return_tensors="pt")
output_ids = model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2)
bot_message = tokenizer.decode(output_ids[0], skip_special_tokens=True)
chat_history.append((message, bot_message))
time.sleep(2)
return "", chat_history
prompt_POS.submit(respond, [template_all.format(prompt_POS), vicuna_S1_chatbot_POS], [template_all.format(prompt_POS), vicuna_S1_chatbot_POS])
prompt_POS.submit(respond, [prompt2_pos.format(prompt_POS), vicuna_S2_chatbot_POS], [prompt2_pos.format(prompt_POS), vicuna_S2_chatbot_POS])
prompt_POS.submit(respond, [prompt_POS, vicuna_S3_chatbot_POS], [prompt_POS, vicuna_S3_chatbot_POS])
prompt_CHUNK.submit(respond, [template_all.format(prompt_CHUNK), vicuna_S1_chatbot_CHUNK], [template_all.format(prompt_CHUNK), vicuna_S1_chatbot_CHUNK])
prompt_CHUNK.submit(respond, [prompt2_chunk.format(prompt_CHUNK), vicuna_S2_chatbot_CHUNK], [prompt2_chunk.format(prompt_CHUNK), vicuna_S2_chatbot_CHUNK])
prompt_CHUNK.submit(respond, [prompt_CHUNK, vicuna_S3_chatbot_CHUNK], [prompt_CHUNK, vicuna_S3_chatbot_CHUNK])
demo.launch()
|