File size: 5,992 Bytes
b308128
937be2f
7f877a9
2baca0d
738a5f6
 
94f53fc
 
 
 
 
 
 
04fc021
738a5f6
 
1941971
 
6204d1b
1941971
8c76c4e
b2e68d1
2baca0d
b2e68d1
2baca0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94f53fc
2baca0d
 
 
 
 
 
 
3c712c1
94f53fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c712c1
a8ee66f
3c712c1
 
 
5cdbb3f
738a5f6
49c7ae8
076d731
1941971
 
 
8c76c4e
1941971
8cbc513
42ca545
75c4a83
738a5f6
 
076d731
 
 
94f53fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
738a5f6
1941971
94f53fc
8c76c4e
35e0ec8
 
edb0bcd
94f53fc
35e0ec8
8c245db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import os
import openai

# Load the Vicuna 7B model and tokenizer
vicuna_tokenizer = AutoTokenizer.from_pretrained("lmsys/vicuna-7b-v1.3")
vicuna_model = AutoModelForCausalLM.from_pretrained("lmsys/vicuna-7b-v1.3")

# Load the LLaMA 7b model and tokenizer
llama_tokenizer = AutoTokenizer.from_pretrained("luodian/llama-7b-hf")
llama_model = AutoModelForCausalLM.from_pretrained("luodian/llama-7b-hf")

template_single = '''Please output any <{}> in the following sentence one per line without any additional text: "{}"'''

def update_api_key(new_key):
    global api_key
    os.environ['OPENAI_API_TOKEN'] = new_key
    openai.api_key = os.environ['OPENAI_API_TOKEN']

def chat(system_prompt, user_prompt, model = 'gpt-3.5-turbo', temperature = 0, verbose = False):
    ''' Normal call of OpenAI API '''
    response = openai.ChatCompletion.create(
    temperature = temperature,
    model=model,
    messages=[
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": user_prompt}
    ])
    
    res = response['choices'][0]['message']['content']
    
    if verbose:
        print('System prompt:', system_prompt)
        print('User prompt:', user_prompt)
        print('GPT response:', res)
        
    return res

def format_chat_prompt(message, chat_history, max_convo_length):
    prompt = ""
    for turn in chat_history[-max_convo_length:]:
        user_message, bot_message = turn
        prompt = f"{prompt}\nUser: {user_message}\nAssistant: {bot_message}"
    prompt = f"{prompt}\nUser: {message}\nAssistant:"
    return prompt

def gpt_respond(tab_name, message, chat_history, max_convo_length = 10):
        formatted_prompt = format_chat_prompt(message, chat_history, max_convo_length)
        print('Prompt + Context:')
        print(formatted_prompt)
        bot_message = chat(system_prompt = f'''Generate the output only for the assistant. Please output any <{tab_name}> in the following sentence one per line without any additional text.''',
                           user_prompt = formatted_prompt)
        chat_history.append((message, bot_message))
        return "", chat_history

def vicuna_respond(message, chat_history):
    input_ids = vicuna_tokenizer.encode(message, return_tensors="pt")
    output_ids = vicuna_model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2)
    bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True)
        
    chat_history.append((message, bot_message))
    time.sleep(2)
    return "", chat_history

def llama_respond(message, chat_history):
    input_ids = llama_tokenizer.encode(message, return_tensors="pt")
    output_ids = llama_model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2)
    bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True)
        
    chat_history.append((message, bot_message))
    time.sleep(2)
    return "", chat_history

def vicuna_respond(message, chat_history):
    input_ids = vicuna_tokenizer.encode(message, return_tensors="pt")
    output_ids = vicuna_model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2)
    bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True)
        
    chat_history.append((message, bot_message))
    time.sleep(2)
    return "", chat_history

def interface():
        gr.Markdown(" Description ")

        textbox_prompt = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter")
        with gr.Row():
            api_key_input = gr.Textbox(label="Open AI Key", placeholder="Enter your Openai key here", type="password")
            api_key_btn = gr.Button(label="Submit Api Key", scale=0)
        tab_name = gr.Dropdown(["Noun", "Determiner", "Noun phrase", "Verb phrase", "Dependent clause", "T-units"], label="Linguistic Entity")
        btn = gr.Button(label="Submit")

        # prompt = template_single.format(tab_name, textbox_prompt)

        gr.Markdown("Strategy 1 QA-Based Prompting")
        with gr.Row():
            vicuna_S1_chatbot = gr.Chatbot(label="vicuna-7b")
            llama_S1_chatbot = gr.Chatbot(label="llama-7b")
            gpt_S1_chatbot = gr.Chatbot(label="gpt-3.5")
        clear = gr.ClearButton(components=[textbox_prompt, api_key_input, vicuna_S1_chatbot, llama_S1_chatbot, gpt_S1_chatbot])
        # gr.Markdown("Strategy 2 Instruction-Based Prompting")
        # with gr.Row():
        #     vicuna_S2_chatbot = gr.Chatbot(label="vicuna-7b")
        #     llama_S2_chatbot = gr.Chatbot(label="llama-7b")
        #     gpt_S2_chatbot = gr.Chatbot(label="gpt-3.5")
        # clear = gr.ClearButton(components=[textbox_prompt, vicuna_S2_chatbot])
        # gr.Markdown("Strategy 3 Structured Prompting")
        # with gr.Row():
        #     vicuna_S3_chatbot = gr.Chatbot(label="vicuna-7b")
        #     llama_S3_chatbot = gr.Chatbot(label="llama-7b")
        #     gpt_S3_chatbot = gr.Chatbot(label="gpt-3.5")
        # clear = gr.ClearButton(components=[textbox_prompt, vicuna_S3_chatbot])

        textbox_prompt.submit(vicuna_respond, inputs=[textbox_prompt, vicuna_S1_chatbot], outputs=[textbox_prompt, vicuna_S1_chatbot])
        # textbox_prompt.submit(respond, inputs=[textbox_prompt, vicuna_S2_chatbot], outputs=[textbox_prompt, vicuna_S2_chatbot])
        # textbox_prompt.submit(respond, inputs=[textbox_prompt, vicuna_S3_chatbot], outputs=[textbox_prompt, vicuna_S3_chatbot])

        textbox_prompt.submit(llama_respond, inputs=[textbox_prompt, llama_S1_chatbot], outputs=[textbox_prompt, llama_S1_chatbot])

        api_key_btn.click(update_api_key, inputs=api_key_input)
        btn.click(gpt_respond, inputs=[tab_name, textbox_prompt, gpt_S1_chatbot], outputs=[tab_name, textbox_prompt, gpt_S1_chatbot])

with gr.Blocks() as demo:
    gr.Markdown("# LLM Evaluator With Linguistic Scrutiny")

    interface()
    
demo.launch()