Spaces:
Runtime error
Runtime error
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler | |
import gradio as gr | |
import torch | |
from PIL import Image | |
import utils | |
is_colab = utils.is_google_colab() | |
class Model: | |
def __init__(self, name, path, prefix): | |
self.name = name | |
self.path = path | |
self.prefix = prefix | |
self.pipe_t2i = None | |
self.pipe_i2i = None | |
models = [ | |
Model("Beeple", "riccardogiorato/beeple-diffusion", "beeple style "), | |
Model("Avatar", "riccardogiorato/avatar-diffusion", "avatartwow style "), | |
Model("Beksinski", "s3nh/beksinski-style-stable-diffusion", "beksinski style "), | |
Model("Poolsuite", "prompthero/poolsuite", "poolsuite style "), | |
Model("Robo Diffusion", "nousr/robo-diffusion", ""), | |
Model("Guohua", "Langboat/Guohua-Diffusion", "guohua style "), | |
Model("JWST", "dallinmackay/JWST-Deep-Space-diffusion", "JWST ") | |
] | |
scheduler = DPMSolverMultistepScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
num_train_timesteps=1000, | |
trained_betas=None, | |
predict_epsilon=True, | |
thresholding=False, | |
algorithm_type="dpmsolver++", | |
solver_type="midpoint", | |
lower_order_final=True, | |
) | |
last_mode = "txt2img" | |
current_model = models[0] | |
current_model_path = current_model.path | |
if is_colab: | |
pipe = StableDiffusionPipeline.from_pretrained( | |
current_model.path, torch_dtype=torch.float16, scheduler=scheduler) | |
else: # download all models | |
vae = AutoencoderKL.from_pretrained( | |
current_model.path, subfolder="vae", torch_dtype=torch.float16) | |
for model in models: | |
try: | |
unet = UNet2DConditionModel.from_pretrained( | |
model.path, subfolder="unet", torch_dtype=torch.float16) | |
model.pipe_t2i = StableDiffusionPipeline.from_pretrained( | |
model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler) | |
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained( | |
model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler) | |
except: | |
models.remove(model) | |
pipe = models[0].pipe_t2i | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶" | |
def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""): | |
global current_model | |
for model in models: | |
if model.name == model_name: | |
current_model = model | |
model_path = current_model.path | |
generator = torch.Generator('cuda').manual_seed( | |
seed) if seed != 0 else None | |
if img is not None: | |
return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator) | |
else: | |
return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator) | |
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator=None): | |
global last_mode | |
global pipe | |
global current_model_path | |
if model_path != current_model_path or last_mode != "txt2img": | |
current_model_path = model_path | |
if is_colab: | |
pipe = StableDiffusionPipeline.from_pretrained( | |
current_model_path, torch_dtype=torch.float16, scheduler=scheduler) | |
else: | |
pipe.to("cpu") | |
pipe = current_model.pipe_t2i | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
last_mode = "txt2img" | |
prompt = current_model.prefix + prompt | |
result = pipe( | |
prompt, | |
negative_prompt=neg_prompt, | |
# num_images_per_prompt=n_images, | |
num_inference_steps=int(steps), | |
guidance_scale=guidance, | |
width=width, | |
height=height, | |
generator=generator) | |
return replace_nsfw_images(result) | |
def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator=None): | |
global last_mode | |
global pipe | |
global current_model_path | |
if model_path != current_model_path or last_mode != "img2img": | |
current_model_path = model_path | |
if is_colab: | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( | |
current_model_path, torch_dtype=torch.float16, scheduler=scheduler) | |
else: | |
pipe.to("cpu") | |
pipe = current_model.pipe_i2i | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
last_mode = "img2img" | |
prompt = current_model.prefix + prompt | |
ratio = min(height / img.height, width / img.width) | |
img = img.resize( | |
(int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS) | |
result = pipe( | |
prompt, | |
negative_prompt=neg_prompt, | |
# num_images_per_prompt=n_images, | |
init_image=img, | |
num_inference_steps=int(steps), | |
strength=strength, | |
guidance_scale=guidance, | |
width=width, | |
height=height, | |
generator=generator) | |
return replace_nsfw_images(result) | |
def replace_nsfw_images(results): | |
for i in range(len(results.images)): | |
if results.nsfw_content_detected[i]: | |
results.images[i] = Image.open("nsfw.png") | |
return results.images[0] | |
css = """.playground-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.playground-diffusion-div div h1{font-weight:900;margin-bottom:7px}.playground-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML( | |
f""" | |
<div class="playground-diffusion-div"> | |
<div> | |
<h1>Playground Diffusion</h1> | |
</div> | |
<p> | |
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br> | |
<a href="https://huggingface.co/riccardogiorato/avatar-diffusion">Avatar</a>,<br/> | |
<a href="https://huggingface.co/riccardogiorato/beeple-diffusion">Beeple</a>,<br/> | |
<a href="https://huggingface.co/s3nh/beksinski-style-stable-diffusion">Beksinski</a>,<br/> | |
Diffusers 🧨 SD model hosted on HuggingFace 🤗. | |
</p> | |
Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")} | |
</p> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=55): | |
with gr.Group(): | |
model_name = gr.Dropdown(label="Model", choices=[ | |
m.name for m in models], value=current_model.name) | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2, | |
placeholder="Enter prompt. Style applied automatically").style(container=False) | |
generate = gr.Button(value="Generate").style( | |
rounded=(False, True, True, False)) | |
image_out = gr.Image(height=512) | |
# gallery = gr.Gallery( | |
# label="Generated images", show_label=False, elem_id="gallery" | |
# ).style(grid=[1], height="auto") | |
with gr.Column(scale=45): | |
with gr.Tab("Options"): | |
with gr.Group(): | |
neg_prompt = gr.Textbox( | |
label="Negative prompt", placeholder="What to exclude from the image") | |
# n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1) | |
with gr.Row(): | |
guidance = gr.Slider( | |
label="Guidance scale", value=7.5, maximum=15) | |
steps = gr.Slider( | |
label="Steps", value=25, minimum=2, maximum=75, step=1) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", value=512, minimum=64, maximum=1024, step=8) | |
height = gr.Slider( | |
label="Height", value=512, minimum=64, maximum=1024, step=8) | |
seed = gr.Slider( | |
0, 2147483647, label='Seed (0 = random)', value=0, step=1) | |
with gr.Tab("Image to image"): | |
with gr.Group(): | |
image = gr.Image(label="Image", height=256, | |
tool="editor", type="pil") | |
strength = gr.Slider( | |
label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5) | |
inputs = [model_name, prompt, guidance, steps, | |
width, height, seed, image, strength, neg_prompt] | |
prompt.submit(inference, inputs=inputs, outputs=image_out) | |
generate.click(inference, inputs=inputs, outputs=image_out) | |
ex = gr.Examples([ | |
[models[0].name, "Neon techno-magic robot with spear pierces an ancient beast, hyperrealism, no blur, 4k resolution, ultra detailed", 7.5, 50], | |
[models[0].name, "halfturn portrait of a big crystal face of a beautiful abstract ancient Egyptian elderly shaman woman, made of iridescent golden crystals, half - turn, bottom view, ominous, intricate, studio, art by anthony macbain and greg rutkowski and alphonse mucha, concept art, 4k, sharp focus", 7.5, 25], | |
], [model_name, prompt, guidance, steps, seed], image_out, inference, cache_examples=False) | |
gr.HTML(""" | |
<p>Models by <a href="https://huggingface.co/riccardogiorato">@riccardogiorato</a><br></p> | |
""") | |
if not is_colab: | |
demo.queue(concurrency_count=1) | |
demo.launch(debug=is_colab, share=is_colab) | |