Spaces:
Sleeping
Sleeping
File size: 7,309 Bytes
555d77a d4c83d2 555d77a 9d504d6 a2c958a 9d504d6 f54e1ed 555d77a d4c83d2 555d77a f54e1ed 9d504d6 a2c958a 9d504d6 ba65c08 c050106 555d77a 1535def 9d504d6 777cd06 555d77a c050106 555d77a 777cd06 07b37ec f54e1ed 9d504d6 33552fd f54e1ed 9d504d6 33552fd 9d504d6 c050106 07b37ec 9d504d6 d4c83d2 a2c958a c050106 555d77a 07b37ec d4c83d2 555d77a f54e1ed 1535def f54e1ed 1535def 555d77a 1535def c050106 1535def 9d504d6 f54e1ed d903541 f54e1ed c050106 555d77a c050106 1535def c050106 f54e1ed 82f5d13 c050106 f54e1ed c050106 f54e1ed c050106 f54e1ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import streamlit as st
from openai import OpenAI
import os
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import torch
import requests
# Set up OpenAI client
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# Set up ElevenLabs API key
ELEVENLABS_API_KEY = "your_api_key"
# Check if GPU is available
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Load metadata and embeddings (ensure these files are in your working directory or update paths)
metadata_path = 'question_metadata.csv' # Update this path if needed
embeddings_path = 'question_dataset_embeddings.npy' # Update this path if needed
metadata = pd.read_csv(metadata_path)
embeddings = np.load(embeddings_path)
# Load the SentenceTransformer model
model = SentenceTransformer("all-MiniLM-L6-v2").to(device)
# Load prompts from files
with open("question_generation_prompt.txt", "r") as file:
question_generation_prompt = file.read()
with open("technical_interviewer_prompt.txt", "r") as file:
technical_interviewer_prompt = file.read()
st.title("Real-World Programming Question Mock Interview")
# Initialize session state variables
if "messages" not in st.session_state:
st.session_state.messages = []
if "follow_up_mode" not in st.session_state:
st.session_state.follow_up_mode = False # Tracks whether we're in follow-up mode
if "generated_question" not in st.session_state:
st.session_state.generated_question = None # Stores the generated question for persistence
if "debug_logs" not in st.session_state:
st.session_state.debug_logs = [] # Stores debug logs for toggling
if "code_output" not in st.session_state:
st.session_state.code_output = None # Stores the output of executed Python code
# Function to find the top 1 most similar question based on user input
def find_top_question(query):
query_embedding = model.encode(query, convert_to_tensor=True, device=device).cpu().numpy()
query_embedding = query_embedding.reshape(1, -1) # Reshape to (1, n_features)
similarities = cosine_similarity(query_embedding, embeddings).flatten()
top_index = similarities.argsort()[-1]
top_result = metadata.iloc[top_index].copy()
top_result['similarity_score'] = similarities[top_index]
return top_result
# Function to generate response using OpenAI API with debugging logs
def generate_response(messages):
debug_log_entry = {"messages": messages}
st.session_state.debug_logs.append(debug_log_entry) # Store debug log
response = client.chat.completions.create(
model="o1-mini",
messages=messages,
)
return response.choices[0].message.content
# Function to generate audio using ElevenLabs API
def generate_audio(text):
url = "https://api.elevenlabs.io/v1/text-to-speech"
headers = {
"xi-api-key": ELEVENLABS_API_KEY,
"content-type": "application/json"
}
payload = {
"text": text,
"voice_id": "21m00tcm4tlvdq8ikwam", # Default voice ID; replace with desired voice ID.
"voice_settings": {
"similarity_boost": 0.85,
"stability": 0.5
}
}
response = requests.post(url, headers=headers, json=payload)
if response.status_code == 200:
audio_file_path = f"assistant_response.mp3"
with open(audio_file_path, "wb") as audio_file:
audio_file.write(response.content)
return audio_file_path
else:
st.error(f"Error generating audio: {response.status_code} - {response.text}")
return None
# User input form for generating a new question
with st.form(key="input_form"):
company = st.text_input("Company", value="Google")
difficulty = st.selectbox("Difficulty", ["Easy", "Medium", "Hard"], index=1)
topic = st.text_input("Topic (e.g., Backtracking)", value="Backtracking")
generate_button = st.form_submit_button(label="Generate")
if generate_button:
st.session_state.messages = []
st.session_state.follow_up_mode = False
query = f"{company} {difficulty} {topic}"
top_question = find_top_question(query)
detailed_prompt = (
f"Transform this LeetCode question into a real-world interview scenario:\n\n"
f"**Company**: {top_question['company']}\n"
f"**Question Name**: {top_question['questionName']}\n"
f"**Difficulty Level**: {top_question['difficulty level']}\n"
f"**Tags**: {top_question['Tags']}\n"
f"**Content**: {top_question['Content']}\n"
f"\nPlease create a real-world interview question based on this information."
)
response_text = generate_response([{"role": "assistant", "content": question_generation_prompt}, {"role": "user", "content": detailed_prompt}])
st.session_state.generated_question = response_text
st.session_state.messages.append({"role": "assistant", "content": response_text})
st.session_state.follow_up_mode = True
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if st.session_state.follow_up_mode:
if user_input := st.chat_input("Continue your conversation or ask follow-up questions here:"):
with st.chat_message("user"):
st.markdown(user_input)
st.session_state.messages.append({"role": "user", "content": user_input})
assistant_response_text = generate_response(
[{"role": "assistant", "content": technical_interviewer_prompt}] + st.session_state.messages
)
assistant_audio_path = generate_audio(assistant_response_text)
with st.chat_message("assistant"):
st.markdown(assistant_response_text)
if assistant_audio_path:
audio_bytes = open(assistant_audio_path, "rb").read()
st.audio(audio_bytes, format="audio/mp3")
st.session_state.messages.append({"role": "assistant", "content": assistant_response_text})
# Left Sidebar: Generated Question and Code Box
with st.sidebar:
# Top Half: Generated Question
st.markdown("## Generated Question")
if st.session_state.generated_question:
st.markdown(st.session_state.generated_question)
else:
st.markdown("_No question generated yet._")
# Divider between sections
st.markdown("---")
# Bottom Half: Python Code Box
st.markdown("## Python Code Interpreter")
code_input = st.text_area("Write your Python code here:")
col1, col2 = st.columns(2)
with col1:
if st.button("Run Code"):
try:
exec_globals = {}
exec(code_input, exec_globals) # Execute user-provided code safely within its own scope.
output_key_values = {k: v for k, v in exec_globals.items() if k != "__builtins__"}
if output_key_values:
output_strs = [f"{key}: {value}" for key, value in output_key_values.items()]
output_display_strs = "\n".join(output_strs)
output_display_strs += "\nCode executed successfully!"
print(output_display_strs)
except Exception as e:
|