codingprepdemo / app.py
rishabhpr's picture
add speech
f54e1ed verified
raw
history blame
7.31 kB
import streamlit as st
from openai import OpenAI
import os
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import torch
import requests
# Set up OpenAI client
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# Set up ElevenLabs API key
ELEVENLABS_API_KEY = "your_api_key"
# Check if GPU is available
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Load metadata and embeddings (ensure these files are in your working directory or update paths)
metadata_path = 'question_metadata.csv' # Update this path if needed
embeddings_path = 'question_dataset_embeddings.npy' # Update this path if needed
metadata = pd.read_csv(metadata_path)
embeddings = np.load(embeddings_path)
# Load the SentenceTransformer model
model = SentenceTransformer("all-MiniLM-L6-v2").to(device)
# Load prompts from files
with open("question_generation_prompt.txt", "r") as file:
question_generation_prompt = file.read()
with open("technical_interviewer_prompt.txt", "r") as file:
technical_interviewer_prompt = file.read()
st.title("Real-World Programming Question Mock Interview")
# Initialize session state variables
if "messages" not in st.session_state:
st.session_state.messages = []
if "follow_up_mode" not in st.session_state:
st.session_state.follow_up_mode = False # Tracks whether we're in follow-up mode
if "generated_question" not in st.session_state:
st.session_state.generated_question = None # Stores the generated question for persistence
if "debug_logs" not in st.session_state:
st.session_state.debug_logs = [] # Stores debug logs for toggling
if "code_output" not in st.session_state:
st.session_state.code_output = None # Stores the output of executed Python code
# Function to find the top 1 most similar question based on user input
def find_top_question(query):
query_embedding = model.encode(query, convert_to_tensor=True, device=device).cpu().numpy()
query_embedding = query_embedding.reshape(1, -1) # Reshape to (1, n_features)
similarities = cosine_similarity(query_embedding, embeddings).flatten()
top_index = similarities.argsort()[-1]
top_result = metadata.iloc[top_index].copy()
top_result['similarity_score'] = similarities[top_index]
return top_result
# Function to generate response using OpenAI API with debugging logs
def generate_response(messages):
debug_log_entry = {"messages": messages}
st.session_state.debug_logs.append(debug_log_entry) # Store debug log
response = client.chat.completions.create(
model="o1-mini",
messages=messages,
)
return response.choices[0].message.content
# Function to generate audio using ElevenLabs API
def generate_audio(text):
url = "https://api.elevenlabs.io/v1/text-to-speech"
headers = {
"xi-api-key": ELEVENLABS_API_KEY,
"content-type": "application/json"
}
payload = {
"text": text,
"voice_id": "21m00tcm4tlvdq8ikwam", # Default voice ID; replace with desired voice ID.
"voice_settings": {
"similarity_boost": 0.85,
"stability": 0.5
}
}
response = requests.post(url, headers=headers, json=payload)
if response.status_code == 200:
audio_file_path = f"assistant_response.mp3"
with open(audio_file_path, "wb") as audio_file:
audio_file.write(response.content)
return audio_file_path
else:
st.error(f"Error generating audio: {response.status_code} - {response.text}")
return None
# User input form for generating a new question
with st.form(key="input_form"):
company = st.text_input("Company", value="Google")
difficulty = st.selectbox("Difficulty", ["Easy", "Medium", "Hard"], index=1)
topic = st.text_input("Topic (e.g., Backtracking)", value="Backtracking")
generate_button = st.form_submit_button(label="Generate")
if generate_button:
st.session_state.messages = []
st.session_state.follow_up_mode = False
query = f"{company} {difficulty} {topic}"
top_question = find_top_question(query)
detailed_prompt = (
f"Transform this LeetCode question into a real-world interview scenario:\n\n"
f"**Company**: {top_question['company']}\n"
f"**Question Name**: {top_question['questionName']}\n"
f"**Difficulty Level**: {top_question['difficulty level']}\n"
f"**Tags**: {top_question['Tags']}\n"
f"**Content**: {top_question['Content']}\n"
f"\nPlease create a real-world interview question based on this information."
)
response_text = generate_response([{"role": "assistant", "content": question_generation_prompt}, {"role": "user", "content": detailed_prompt}])
st.session_state.generated_question = response_text
st.session_state.messages.append({"role": "assistant", "content": response_text})
st.session_state.follow_up_mode = True
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if st.session_state.follow_up_mode:
if user_input := st.chat_input("Continue your conversation or ask follow-up questions here:"):
with st.chat_message("user"):
st.markdown(user_input)
st.session_state.messages.append({"role": "user", "content": user_input})
assistant_response_text = generate_response(
[{"role": "assistant", "content": technical_interviewer_prompt}] + st.session_state.messages
)
assistant_audio_path = generate_audio(assistant_response_text)
with st.chat_message("assistant"):
st.markdown(assistant_response_text)
if assistant_audio_path:
audio_bytes = open(assistant_audio_path, "rb").read()
st.audio(audio_bytes, format="audio/mp3")
st.session_state.messages.append({"role": "assistant", "content": assistant_response_text})
# Left Sidebar: Generated Question and Code Box
with st.sidebar:
# Top Half: Generated Question
st.markdown("## Generated Question")
if st.session_state.generated_question:
st.markdown(st.session_state.generated_question)
else:
st.markdown("_No question generated yet._")
# Divider between sections
st.markdown("---")
# Bottom Half: Python Code Box
st.markdown("## Python Code Interpreter")
code_input = st.text_area("Write your Python code here:")
col1, col2 = st.columns(2)
with col1:
if st.button("Run Code"):
try:
exec_globals = {}
exec(code_input, exec_globals) # Execute user-provided code safely within its own scope.
output_key_values = {k: v for k, v in exec_globals.items() if k != "__builtins__"}
if output_key_values:
output_strs = [f"{key}: {value}" for key, value in output_key_values.items()]
output_display_strs = "\n".join(output_strs)
output_display_strs += "\nCode executed successfully!"
print(output_display_strs)
except Exception as e: