Spaces:
Sleeping
Sleeping
import streamlit as st | |
from openai import OpenAI | |
import os | |
import pandas as pd | |
import numpy as np | |
from sentence_transformers import SentenceTransformer | |
from sklearn.metrics.pairwise import cosine_similarity | |
import torch | |
import requests | |
# Set up OpenAI client | |
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) | |
# Set up ElevenLabs API key | |
ELEVENLABS_API_KEY = "your_api_key" | |
# Check if GPU is available | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {device}") | |
# Load metadata and embeddings (ensure these files are in your working directory or update paths) | |
metadata_path = 'question_metadata.csv' # Update this path if needed | |
embeddings_path = 'question_dataset_embeddings.npy' # Update this path if needed | |
metadata = pd.read_csv(metadata_path) | |
embeddings = np.load(embeddings_path) | |
# Load the SentenceTransformer model | |
model = SentenceTransformer("all-MiniLM-L6-v2").to(device) | |
# Load prompts from files | |
with open("question_generation_prompt.txt", "r") as file: | |
question_generation_prompt = file.read() | |
with open("technical_interviewer_prompt.txt", "r") as file: | |
technical_interviewer_prompt = file.read() | |
st.title("Real-World Programming Question Mock Interview") | |
# Initialize session state variables | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
if "follow_up_mode" not in st.session_state: | |
st.session_state.follow_up_mode = False # Tracks whether we're in follow-up mode | |
if "generated_question" not in st.session_state: | |
st.session_state.generated_question = None # Stores the generated question for persistence | |
if "debug_logs" not in st.session_state: | |
st.session_state.debug_logs = [] # Stores debug logs for toggling | |
if "code_output" not in st.session_state: | |
st.session_state.code_output = None # Stores the output of executed Python code | |
# Function to find the top 1 most similar question based on user input | |
def find_top_question(query): | |
query_embedding = model.encode(query, convert_to_tensor=True, device=device).cpu().numpy() | |
query_embedding = query_embedding.reshape(1, -1) # Reshape to (1, n_features) | |
similarities = cosine_similarity(query_embedding, embeddings).flatten() | |
top_index = similarities.argsort()[-1] | |
top_result = metadata.iloc[top_index].copy() | |
top_result['similarity_score'] = similarities[top_index] | |
return top_result | |
# Function to generate response using OpenAI API with debugging logs | |
def generate_response(messages): | |
debug_log_entry = {"messages": messages} | |
st.session_state.debug_logs.append(debug_log_entry) # Store debug log | |
response = client.chat.completions.create( | |
model="o1-mini", | |
messages=messages, | |
) | |
return response.choices[0].message.content | |
# Function to generate audio using ElevenLabs API | |
def generate_audio(text): | |
url = "https://api.elevenlabs.io/v1/text-to-speech" | |
headers = { | |
"xi-api-key": ELEVENLABS_API_KEY, | |
"content-type": "application/json" | |
} | |
payload = { | |
"text": text, | |
"voice_id": "21m00tcm4tlvdq8ikwam", # Default voice ID; replace with desired voice ID. | |
"voice_settings": { | |
"similarity_boost": 0.85, | |
"stability": 0.5 | |
} | |
} | |
response = requests.post(url, headers=headers, json=payload) | |
if response.status_code == 200: | |
audio_file_path = f"assistant_response.mp3" | |
with open(audio_file_path, "wb") as audio_file: | |
audio_file.write(response.content) | |
return audio_file_path | |
else: | |
st.error(f"Error generating audio: {response.status_code} - {response.text}") | |
return None | |
# User input form for generating a new question | |
with st.form(key="input_form"): | |
company = st.text_input("Company", value="Google") | |
difficulty = st.selectbox("Difficulty", ["Easy", "Medium", "Hard"], index=1) | |
topic = st.text_input("Topic (e.g., Backtracking)", value="Backtracking") | |
generate_button = st.form_submit_button(label="Generate") | |
if generate_button: | |
st.session_state.messages = [] | |
st.session_state.follow_up_mode = False | |
query = f"{company} {difficulty} {topic}" | |
top_question = find_top_question(query) | |
detailed_prompt = ( | |
f"Transform this LeetCode question into a real-world interview scenario:\n\n" | |
f"**Company**: {top_question['company']}\n" | |
f"**Question Name**: {top_question['questionName']}\n" | |
f"**Difficulty Level**: {top_question['difficulty level']}\n" | |
f"**Tags**: {top_question['Tags']}\n" | |
f"**Content**: {top_question['Content']}\n" | |
f"\nPlease create a real-world interview question based on this information." | |
) | |
response_text = generate_response([{"role": "assistant", "content": question_generation_prompt}, {"role": "user", "content": detailed_prompt}]) | |
st.session_state.generated_question = response_text | |
st.session_state.messages.append({"role": "assistant", "content": response_text}) | |
st.session_state.follow_up_mode = True | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
if st.session_state.follow_up_mode: | |
if user_input := st.chat_input("Continue your conversation or ask follow-up questions here:"): | |
with st.chat_message("user"): | |
st.markdown(user_input) | |
st.session_state.messages.append({"role": "user", "content": user_input}) | |
assistant_response_text = generate_response( | |
[{"role": "assistant", "content": technical_interviewer_prompt}] + st.session_state.messages | |
) | |
assistant_audio_path = generate_audio(assistant_response_text) | |
with st.chat_message("assistant"): | |
st.markdown(assistant_response_text) | |
if assistant_audio_path: | |
audio_bytes = open(assistant_audio_path, "rb").read() | |
st.audio(audio_bytes, format="audio/mp3") | |
st.session_state.messages.append({"role": "assistant", "content": assistant_response_text}) | |
# Left Sidebar: Generated Question and Code Box | |
with st.sidebar: | |
# Top Half: Generated Question | |
st.markdown("## Generated Question") | |
if st.session_state.generated_question: | |
st.markdown(st.session_state.generated_question) | |
else: | |
st.markdown("_No question generated yet._") | |
# Divider between sections | |
st.markdown("---") | |
# Bottom Half: Python Code Box | |
st.markdown("## Python Code Interpreter") | |
code_input = st.text_area("Write your Python code here:") | |
col1, col2 = st.columns(2) | |
with col1: | |
if st.button("Run Code"): | |
try: | |
exec_globals = {} | |
exec(code_input, exec_globals) # Execute user-provided code safely within its own scope. | |
output_key_values = {k: v for k, v in exec_globals.items() if k != "__builtins__"} | |
if output_key_values: | |
output_strs = [f"{key}: {value}" for key, value in output_key_values.items()] | |
output_display_strs = "\n".join(output_strs) | |
output_display_strs += "\nCode executed successfully!" | |
print(output_display_strs) | |
except Exception as e: | |