Spaces:
Running
on
Zero
Running
on
Zero
# DeepLab in Detectron2 | |
In this repository, we implement DeepLabV3 and DeepLabV3+ in Detectron2. | |
## Installation | |
Install Detectron2 following [the instructions](https://detectron2.readthedocs.io/tutorials/install.html). | |
## Training | |
To train a model with 8 GPUs run: | |
```bash | |
cd /path/to/detectron2/projects/DeepLab | |
python train_net.py --config-file configs/Cityscapes-SemanticSegmentation/deeplab_v3_plus_R_103_os16_mg124_poly_90k_bs16.yaml --num-gpus 8 | |
``` | |
## Evaluation | |
Model evaluation can be done similarly: | |
```bash | |
cd /path/to/detectron2/projects/DeepLab | |
python train_net.py --config-file configs/Cityscapes-SemanticSegmentation/deeplab_v3_plus_R_103_os16_mg124_poly_90k_bs16.yaml --eval-only MODEL.WEIGHTS /path/to/model_checkpoint | |
``` | |
## Cityscapes Semantic Segmentation | |
Cityscapes models are trained with ImageNet pretraining. | |
<table><tbody> | |
<!-- START TABLE --> | |
<!-- TABLE HEADER --> | |
<th valign="bottom">Method</th> | |
<th valign="bottom">Backbone</th> | |
<th valign="bottom">Output<br/>resolution</th> | |
<th valign="bottom">mIoU</th> | |
<th valign="bottom">model id</th> | |
<th valign="bottom">download</th> | |
<!-- TABLE BODY --> | |
<tr><td align="left">DeepLabV3</td> | |
<td align="center">R101-DC5</td> | |
<td align="center">1024×2048</td> | |
<td align="center"> 76.7 </td> | |
<td align="center"> - </td> | |
<td align="center"> - | - </td> | |
</tr> | |
<tr><td align="left"><a href="configs/Cityscapes-SemanticSegmentation/deeplab_v3_R_103_os16_mg124_poly_90k_bs16.yaml">DeepLabV3</a></td> | |
<td align="center">R103-DC5</td> | |
<td align="center">1024×2048</td> | |
<td align="center"> 78.5 </td> | |
<td align="center"> 28041665 </td> | |
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/DeepLab/Cityscapes-SemanticSegmentation/deeplab_v3_R_103_os16_mg124_poly_90k_bs16/28041665/model_final_0dff1b.pkl | |
">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/DeepLab/Cityscapes-SemanticSegmentation/deeplab_v3_R_103_os16_mg124_poly_90k_bs16/28041665/metrics.json | |
">metrics</a></td> | |
</tr> | |
<tr><td align="left">DeepLabV3+</td> | |
<td align="center">R101-DC5</td> | |
<td align="center">1024×2048</td> | |
<td align="center"> 78.1 </td> | |
<td align="center"> - </td> | |
<td align="center"> - | - </td> | |
</tr> | |
<tr><td align="left"><a href="configs/Cityscapes-SemanticSegmentation/deeplab_v3_plus_R_103_os16_mg124_poly_90k_bs16.yaml">DeepLabV3+</a></td> | |
<td align="center">R103-DC5</td> | |
<td align="center">1024×2048</td> | |
<td align="center"> 80.0 </td> | |
<td align="center">28054032</td> | |
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/DeepLab/Cityscapes-SemanticSegmentation/deeplab_v3_plus_R_103_os16_mg124_poly_90k_bs16/28054032/model_final_a8a355.pkl | |
">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/DeepLab/Cityscapes-SemanticSegmentation/deeplab_v3_plus_R_103_os16_mg124_poly_90k_bs16/28054032/metrics.json | |
">metrics</a></td> | |
</tr> | |
</tbody></table> | |
Note: | |
- [R103](https://dl.fbaipublicfiles.com/detectron2/DeepLab/R-103.pkl): a ResNet-101 with its first 7x7 convolution replaced by 3 3x3 convolutions. | |
This modification has been used in most semantic segmentation papers. We pre-train this backbone on ImageNet using the default recipe of [pytorch examples](https://github.com/pytorch/examples/tree/master/imagenet). | |
- DC5 means using dilated convolution in `res5`. | |
## <a name="CitingDeepLab"></a>Citing DeepLab | |
If you use DeepLab, please use the following BibTeX entry. | |
* DeepLabv3+: | |
``` | |
@inproceedings{deeplabv3plus2018, | |
title={Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation}, | |
author={Liang-Chieh Chen and Yukun Zhu and George Papandreou and Florian Schroff and Hartwig Adam}, | |
booktitle={ECCV}, | |
year={2018} | |
} | |
``` | |
* DeepLabv3: | |
``` | |
@article{deeplabv32018, | |
title={Rethinking atrous convolution for semantic image segmentation}, | |
author={Chen, Liang-Chieh and Papandreou, George and Schroff, Florian and Adam, Hartwig}, | |
journal={arXiv:1706.05587}, | |
year={2017} | |
} | |
``` | |